Previous |  Up |  Next

Article

Title: $L^p$-regularity for systems of PDE's, with coefficients in VMO (English)
Author: Chiarenza, Filippo
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 5
Issue: 1994
Year:
Pages: 1-32
.
Category: math
.
MSC: 35B65
MSC: 35J15
MSC: 35J45
idZBL: Zbl 0830.35017
idMR: MR1322308
.
Date available: 2009-10-08T09:44:30Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702458
.
Reference: [1] Acquistapace, P.: On BMO regularity for linear elliptic system.Ann. Mat. Pura Appl. 161 (1992), 231–269. MR 1174819
Reference: [2] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I.Comm. Pure Appl. Math. 12 (1959), 623–727. Zbl 0093.10401, MR 0125307
Reference: [3] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II.Comm. Pure Appl. Math. 17 (1964), 35–72. Zbl 0123.28706, MR 0162050
Reference: [4] Bramanti, M., Cerutti, M.C.: $W^{1,2}_p$ solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients.Comm. Partial Differential Equations 18 (1993), 1735–1763. Zbl 0816.35045, MR 1239929
Reference: [5] Bureau, F.: Divergent integrals and partial differential equations.Comm. Pure Appl. Math. 8 (1955), 143–202. Zbl 0064.09204, MR 0068085
Reference: [6] Calderón, A.P.: Integrales singulares y sus aplicaciones aecuaciones diferenciales hyperbolicas.Cursos y seminarios de Matematicas, 3, Univ. de Buenos Aires, 1960. MR 0123834
Reference: [7] Calderón, A.P.: Commutators of singular integral operators.Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092–1099. MR 0177312
Reference: [8] Calderón, A.P.: Singular integrals.Bull. Amer. Math. Soc. 72 (1966), 427–465. MR 0209918
Reference: [9] Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals.Acta Math. 88 (1952), 85–139. MR 0052553
Reference: [10] Calderón, A.P., Zygmund, A.: Singular integral operators and differential equations.Amer. J. Math. 79 (1957), 901–921. MR 0100768
Reference: [11] Calderón, A.P., Zygmund, A.: On singular integrals with variable kernels.Applicable Analysis 7 (1978), 221–238. MR 0511145
Reference: [12] Campanato, S.: Proprietà di hölderianità di alcune classi difunzioni.Ann. Scuola Norm. Sup. Pisa 17 (1963), 175–188. MR 0156188
Reference: [13] Campanato, S.: Equazioni ellittiche del secondo ordine e spazi L $^{2,\lambda }$.Ann. Mat. Pura Appl. 69 (1965), 321–382. MR 0192168
Reference: [14] Campanato, S.: Un risultato relativo ad equazioni ellittiche del secondo ordine di tipo non variazionale.Ann. Scuola Norm. Sup. Pisa 21 (1967), 701–707. Zbl 0157.42202, MR 0224996
Reference: [15] Campanato, S.: Sistemi ellittici in forma divergenza. Regolarità all’interno.Quaderni Scuola Normale Superiore Pisa, 1980. Zbl 0453.35026, MR 0668196
Reference: [16] Campanato, S.: Sistemi ellittici lineari e non lineari.Quaderno S.I.S.S.A., a.a. 1985–86.
Reference: [16$^{\prime }$] Campanato, S.: Su un teorema di interpolazione di G.Stampacchia.Ann. Scuola Norm. Sup. Pisa 20 (1966), 649–652. Zbl 0195.41102, MR 0209864
Reference: [17] Campanato, S., Stampacchia, G.: Sulle maggiorazioni in $L^p$ nella teoria delle equazioni ellittiche.Boll. Un. Mat. Ital. 20 (1965), 393–399. MR 0192169
Reference: [18] Chiarenza, F., Frasca, M., Longo, P.: Interior $W^{2,p}$ estimates for non divergence elliptic equations with discontinuous coefficients.Ricerche Mat. 40 (1991), 149–168. MR 1191890
Reference: [19] Chiarenza, F., Frasca, M., Longo, P.: $W^{2,p}$-solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients.Trans. Amer. Math. Soc. 336 (1993), 841–853. Zbl 0818.35023, MR 1088476
Reference: [20] Chiarenza, F., Franciosi, M., Frasca, M.: $L^p$ estimates for linear elliptic systems with discontinuous coefficients.Rend. Acc. Lincei (9) 5 (1994), 27–32. MR 1273890
Reference: [21] Chicco, M.: Solvability of the Dirichlet problem in $H^{2,p} (\Omega )$ for a class of linear second order elliptic partial differential equations.Boll. Un. Mat. Ital. (4) 4 (1971), 374–387. MR 0298209
Reference: [22] Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.Ann. of Math. 103 (1976), 611–635. Zbl 0326.32011, MR 0412721
Reference: [23] Coifman, R., Lions, P.L., Meyer, Y., Semmes, S.: Compensated compactness and Hardy spaces.J. Math. Pures Appl. 72 (1993), 247–286. Zbl 0864.42009, MR 1225511
Reference: [24] Fazio, G. Di: $L^p$ estimates for divergence form elliptic equations with discontinuous coefficients.preprint. Zbl 1007.65053
Reference: [25] Fazio, G. Di: $L^p$ estimates for divergence form elliptic systems with discontinuous coefficients.preprint. Zbl 1007.65053
Reference: [26] Fazio, G. Di, Ragusa, M.A.: Interior estimates in Morrey spaces for strong solutions to non divergence form equations with discontinuous coefficients.J.Funct. Anal. 112 (1993), 241–256. MR 1213138
Reference: [27] Douglis, A., Nirenberg, L.: Interior estimates for elliptic system of partial differential equations.Comm. Pure Appl. Math. 8 (1955), 503–538. MR 0075417
Reference: [28] Fabes, E.: Singular integrals and partial differential equations of parabolic type.Studia Math. 28 (1966), 81–131. Zbl 0144.35002, MR 0213744
Reference: [29] Fabes, E., Rivière, N.: Singular integrals with mixed homogeneity.Studia Math. 27 (1966), 19–38. MR 0209787
Reference: [30] Fefferman, C., Stein, E.: $H^p$ spaces of several variables.Acta Math. 129 (1972), 137–193. MR 0447953
Reference: [31] Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic system.Ann. of Math. Stud. 105 (1983), Princeton Univ. Press. MR 0717034
Reference: [32] Gilbarg, D., Trudinger, N.: Elliptic partial differential equations of second order.$2^{\text{nd}}$ edition, Springer-Verlag, 1983. Zbl 0562.35001, MR 0737190
Reference: [33] Greco, D.: Nuove formule integrali di tipo ellittico ed applicazioni alla teoria del potenziale.Ricerche Mat. 5 (1956), 126–149. MR 0082030
Reference: [34] Hardy, G., Littlewood, J., Polya, G.: Inequalities.Cambridge Univ. Press, 1952. Zbl 0047.05302, MR 0046395
Reference: [35] Hellwig, G.: Partial Differential Equations.Blaisdell Publishing Co., 1964. Zbl 0133.35701
Reference: [36] Janson, S.: On functions with conditions on the mean oscillation.Ark. Mat. 14 (1976), 189–196. Zbl 0341.43005, MR 0438030
Reference: [37] Janson, S.: Mean oscillation and commutators of singular integrals operators.Ark. Mat. 16 (1978), 263–270. MR 0524754
Reference: [38] John, F.: The fundamental solution of linear elliptic differential equations with analytic coefficients.Comm. Pure Appl. Math. 3 (1950), 273–304. Zbl 0041.06203, MR 0042030
Reference: [39] John, F., Nirenberg, L.: On functions of bounded mean oscillation.Comm. Pure Appl. Math. 14 (1961), 415–426. Zbl 0102.04302, MR 0131498
Reference: [40] Koshelev, A.I.: On boundedness in $L^p$ of solutions of elliptic differential equations.Mat. Sb. 38 (1956), 359–372. MR 0078563
Reference: [41] Meyers, N.: An $L^p$ estimate for the gradient of solutions of second order elliptic divergence equations.Ann. Scuola Norm. Sup. Pisa 17 (1963), 189–206. MR 0159110
Reference: [42] Meyers, N.: Mean oscillation over cubes and Hölder continuity.Proc. Amer. Math. Soc. 15 (1964), 717–721. Zbl 0129.04002, MR 0168712
Reference: [43] Miranda, C.: Partial differential equations of elliptic type.$2^{\text{nd}}$ ed., Springer-Verlag, 1970. Zbl 0198.14101, MR 0284700
Reference: [44] Morrey, C.B.: Multiple integrals in the calculus of variations.Springer-Verlag, 1966. Zbl 0142.38701, MR 0202511
Reference: [45] Neri, U.: Singular integrals.Lect. Notes Mathematics, 200, Springer Verlag, 1971. Zbl 0219.44006, MR 0463818
Reference: [46] Neri, U.: Fractional integration on the space $H^1$ and its dual.Studia Math. 53 (1975), 175–189. MR 0388074
Reference: [47] Neri, U.: Some properties of bounded mean oscillation.Studia Math. 41 (1977), 63–75. MR 0445210
Reference: [48] Palagachev, D.K.: Quasilinear elliptic equations with $\text{\rm {VMO}}$ coefficients.preprint. MR 1308019
Reference: [49] Sarason, D.: Functions of vanishing mean oscillation.Trans. Amer.Math. Soc. 207 (1975), 391–405. Zbl 0319.42006, MR 0377518
Reference: [50] Simader, C.: On Dirichlet’s boundary value problem.Lect. Notes Mathematics, 268, Springer-Verlag, 1972. Zbl 0242.35027, MR 0473503
Reference: [51] Solonnikov, V.A.: On Green’s matrices for elliptic boundary value problems I.Proc. Steklov Inst. Math. 110 (1970), 123–170. MR 0289935
Reference: [52] Spanne, S.: Some function spaces defined using the mean oscillation over cubes.Ann. Scuola Norm. Sup. Pisa 19 (1965), 593–608. Zbl 0199.44303, MR 0190729
Reference: [53] Stampacchia, G.: $\mathscr{L}^{p,\lambda}$ spaces and interpolation.Comm. Pure Appl. Math. 17 (1964), 293–306. MR 0178350
Reference: [53$^{\prime }$] Stampacchia, G.: The spaces $\mathscr{L}^{p,\lambda}$, $\mathscr{N}^{p,\lambda}$ and interpolation.Ann. Scuola Norm. Sup. Pisa 19 (1965), 443–462. MR 0199697
Reference: [54] Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals.Princeton Univ. Press, 1993. Zbl 0821.42001, MR 1232192
Reference: [55] Uchiyama, A.: On the compactness of operators of Hankel type.Tôhoku Math. J. 30 (1978), 163–171. Zbl 0384.47023, MR 0467384
Reference: [56] Vitanza, C.: $W^{2,p}$ regularity for a class of elliptic second order equations with discontinuous coefficients.Matematiche 47 (1992), 177–186. MR 1229461
Reference: [57] Vitanza, C.: A new contribution to the $W^{2,p}$ regularity for a class of elliptic second order equations with discontinuous coefficients.to appear in Matematiche. MR 1320669
.

Files

Files Size Format View
NAFSA_094-1994-1_4.pdf 421.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo