Previous |  Up |  Next

Article

References:
[1] Adams, D.R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math. 128 (1988), 385–398. MR 0960950 | Zbl 0672.31008
[2] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math. 15 (1962), 119–147. MR 0147774 | Zbl 0109.32701
[3] Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. Comm. Pure Appl. Math. 12 (1959), 623–727. MR 0125307 | Zbl 0093.10401
[4] Bennett, C., Rudnick, K.: On Lorentz-Zygmund spaces. Dissertationes Math. 175 (1980), 1–72. MR 0576995 | Zbl 0456.46028
[5] Bennett, C., Sharpley, R.: Interpolation of operators. Academic Press, New York, 1988. MR 0928802 | Zbl 0647.46057
[6] Birman, M.S., Karadzhov, G.E., Solomyak, M.Z.: Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs. Adv. in Soviet Math. 7 (1991), 85–106. MR 1306510 | Zbl 0768.47025
[7] Birman, M.S., Solomyak, M.Z.: Piecewise polynomial approximations of functions of the classes $W_p^\alpha $. Mat. Sb. 73 (1967), 331–355. MR 0217487
[8] Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of non-smooth elliptic operators, I. Trans. Moscow Math. Soc. 27 (1972), 1–52. MR 1157648
[9] Birman, M.S., Solomyak, M.Z.: Spectral asymptotics of non-smooth elliptic operators, II. Trans. Moscow Math. Soc. 28 (1973), 1–32. MR 1157648
[10] Birman, M.S., Solomyak, M.Z.: Quantitative analysis in Sobolev imbedding theorems and applications to spectral theory. 10th Math. School Kiev 1974, pp. 5–189. MR 0562305 | Zbl 0426.46020
[11] Birman, M.S., Solomyak, M.Z.: The asymptotics of the spectrum of pseudodifferential operators with anisotropically homogeneous symbols, I, II. Vestnik Leningrad Univ. Mat. 13 (1977), 13–21. (Russian)
[12] Birman, M.S., Solomyak, M.Z.: Estimates for the number of negative eigenvalues of the Schrödinger operator and its generalizations. Adv. in Soviet Math. 7 (1991), 1–55. MR 1306507
[13] Bourgain, J., Pajor, A., Szarek, S.J., Tomczak, N. -Jaegerman: On the duality problem for entropy numbers of operators. Geometric aspects of functional analysis (1987–88), Lecture Notes in Mathematics, Vol. 1376, Springer, Berlin, 1989, pp. 50–63. MR 1008716
[14] Carl, B.: Entropy numbers, $s$-numbers and eigenvalue problems. J. Funct. Anal. 41 (1981), 290–306. MR 0619953 | Zbl 0466.41008
[15] Carl, B.: Entropy numbers of embedding maps between Besov spaces with an application to eigenvalue problems. Proc. Roy. Soc. Edinburgh Sect. A 90 (1981), 63–70. MR 0636064 | Zbl 0508.47041
[16] Carl, B., Stephani, I.: Entropy, compactness and the approximation of operators. Cambridge University Press, Cambridge, 1990. MR 1098497 | Zbl 0705.47017
[17] Carl, B., Triebel, H.: Inequalities between eigenvalues, entropy numbers and related quantities in Banach spaces. Math. Ann. 251 (1980), 129–133. MR 0585959
[18] Cobos, F., Edmunds, D.E.: Clarkson’s inequalities, Besov spaces and Triebel–Sobolev spaces. Z. Anal. Anwendungen 7 (1988), 229–232. MR 0951121 | Zbl 0663.46026
[19] Cobos, F., Edmunds, D.E., Potter, A.J.B.: Real interpolation and compact linear operators. J. Funct. Anal. 88 (1990), 351–365. MR 1038446 | Zbl 0704.46049
[20] Cobos, F., Fernandez, D.L.: On interpolation of compact operators. Ark. Mat. 27 (1989), 211–217. MR 1022277 | Zbl 0691.46047
[21] Cwikel, M.: Weak type estimates for singular values and the number of bound states of Schrödinger operators. Ann. of Math. 106 (1977), 93–100. MR 0473576 | Zbl 0362.47006
[22] Cwikel, M.: Real and complex interpolation and extrapolation of compact operators. Technion, Haifa, 1990, preprint. MR 1150590
[23] Edmunds, D.E., Evans, W.D.: Spectral theory and differential operators. Oxford University Press, Oxford, 1987. MR 0929030 | Zbl 0628.47017
[24] Edmunds, D.E., Evans, W.D., Harris, D.J.: Approximation numbers of certain Volterra integral operators. J. London Math. Soc. 37 (1988), no. 2, 471–489. MR 0939123 | Zbl 0658.47049
[25] Edmunds, D.E., Gurka, P., Pick, L.: Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Math. 109 (1994), 73–90. MR 1267713 | Zbl 0821.46036
[26] Edmunds, D.E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalised Lorentz–Zygmund spaces. to appear. MR 1336431
[27] Edmunds, D.E., Ilyin, A.A.: On some multiplicative inequalities and approximation numbers. Quart. J. Math. Oxford 45 (1994), 159–179. MR 1280691 | Zbl 0818.46027
[28] Edmunds, D.E., Ilyin, A.A.: Approximation numbers of embeddings of Sobolev spaces. to appear. MR 1376290 | Zbl 0841.46022
[29] Edmunds, D.E., Krbec, M.: Two limiting cases of Sobolev imbeddings. to appear. MR 1331250 | Zbl 0835.46027
[30] Edmunds, D.E., Stepanov, V.D.: The measure of non-compactness and approximation numbers of certain Volterra integral operators. Math. Ann. 298 (1994), 41–66. MR 1252816 | Zbl 0788.45013
[31] Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces. Proc. London Math. Soc. 58 (1989), no. 3, 137–152. MR 0969551 | Zbl 0629.46034
[32] Edmunds, D.E., Triebel, H.: Entropy numbers and approximation numbers in function spaces, II. Proc. London Math. Soc. 64 (1992), no. 3, 153–169. MR 1132858 | Zbl 0778.46022
[33] Edmunds, D.E., Triebel, H.: Eigenvalue distributions of some degenerate elliptic operators: an approach via entropy numbers. Math. Ann. 299 (1994), 311–340. MR 1275771 | Zbl 0804.35097
[34] Edmunds, D.E., Triebel, H.: Logarithmic Sobolev spaces and their applications to spectral theory. Proc. London Math. Soc., to appear. MR 1337470 | Zbl 0835.46028
[35] Edmunds, D.E., Triebel, H.: Function spaces, entropy numbers, differential operators. (forthcoming book). MR 1410258 | Zbl 1143.46001
[36] Edmunds, D.E., Tylli, H.-O.: On the entropy numbers of an operator and its adjoint. Math. Nachr. 126 (1986), 231–239. MR 0846577 | Zbl 0625.47015
[37] Edmunds, D.E., Tylli, H.-O.: Entropy numbers of tensor products of operators. Ark. Mat. 31 (1993), 247–274. MR 1263554 | Zbl 1047.47502
[38] Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34 (1985), 777–799. MR 0808825 | Zbl 0551.46018
[39] Fusco, N., Lions, P.L., Sbordone, C.: Some remarks on Sobolev imbeddings in borderline cases. Preprint No. 25, Università degli Studi di Napoli ”Federico II”, 1993, pp. 7.
[40] Franke, J., Runst, Th.: Regular elliptic boundary value problems in Besov–Triebel–Lizorkin spaces. to appear. MR 1349041 | Zbl 0843.35026
[41] Glushin, E.D.: Norms of random matrices and diameter of finite-dimensional sets. Mat. Sb. 120 (1983), 180–189. (Russian) MR 0687610
[42] Haroske, D.: Approximation numbers in weighted function spaces. to appear.
[43] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators I. Math. Nachr. 167 (1994), 131–156. MR 1285311 | Zbl 0829.46019
[44] Haroske, D., Triebel, H.: Entropy numbers in weighted function spaces and eigenvalue distributions of some degenerate pseudodifferential operators II. Math. Nachr. 168 (1994), 109–137. MR 1282635 | Zbl 0829.46020
[45] König, H.: Eigenvalue distributions of compact operators. Birkhäuser, Basel, 1986. MR 0889455
[46] Lieb, E.W.: Bounds on the eigenvalues of the Laplace and Schrödinger operators. Bull. Amer. Math. Soc. 82 (1976), 751–753. MR 0407909 | Zbl 0329.35018
[47] Linde, R.: $s$-numbers of diagonal operators and Besov embeddings. Proc. 13th Winter School, Suppl. Rend. Circ. Mat. Palermo 2 (1986), 83–110. MR 0894275
[48] Pietsch, A.: Operator ideals. North-Holland, Amsterdam, 1980. MR 0582655 | Zbl 0455.47032
[49] Pietsch, A.: Eigenvalues and $s$-numbers. Cambridge University Press, Cambridge, 1987. MR 0890520 | Zbl 0615.47019
[50] Rosenbljum, G.V.: The distribution of the discrete spectrum for singular differential operators. Soviet Math. Dokl. 13 (1972), 245–249.
[51] Rosenbljum, G.V.: Distribution of the discrete spectrum of singular differential operators. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1976), 75–86. (Russian) MR 0430557
[52] Schechter, M. : Spectra of partial differential operators (2nd edition). North Holland, Amsterdam, 1986. MR 0869254
[53] Sickel, W., Triebel, H.: Hölder inequalities and sharp embeddings in function spaces of $B_{pq}^s$ and $F_{pq}^s$ type. to appear.
[54] Simon, B.: Analysis with weak trace ideals and the number of bound states of Schrödinger operators. Trans. Amer. Math. Soc. 224 (1976), 367–380. MR 0423128 | Zbl 0348.47017
[55] Simon, B.: Trace ideals and their applications. Cambridge University Press, Cambridge, 1979. MR 0541149 | Zbl 0423.47001
[56] Solomyak, M.Z.: Piecewise polynomial approximation of functions from $H^\ell ((0,1)^d)$, $2\ell =d,$ and applications to the spectral theory of the Schrödinger operator. Israel J. Math. 86 (1994), 253–275. MR 1276138
[57] Solomyak, M.Z.: Piecewise polynomial approximation of functions from Sobolev spaces, revisited. to appear. MR 1423362 | Zbl 0885.46033
[58] Solomyak, M.Z.: Two-sided estimates on singular values for a class of integral operators on the semi-axis. to appear. Zbl 0817.47024
[59] Strichartz, R.S.: A note on Trudinger’s extension of Sobolev’s inequalities. Indiana Univ. Math. J. 21 (1972), 841–8. MR 0293389 | Zbl 0241.46028
[60] Tashkian, G.M.: The classical formula of the asymptotics of the spectrum of elliptic equations, degenerate at the boundary of the domain. Mat. Zametki 30 (1981), no. 6, 871–880. (Russian) MR 0641661
[61] Triebel, H.: Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam, 1978. MR 0503903 | Zbl 0387.46033
[62] Triebel, H.: Theory of function spaces. Birkhäuser, Basel, 1983. MR 0781540 | Zbl 0546.46028
[63] Triebel, H.: Theory of function spaces II. Birkhäuser, Basel, 1992. MR 1163193 | Zbl 0763.46025
[64] Triebel, H.: Approximation numbers and entropy numbers of embeddings of fractional Besov–Sobolev spaces in Orlicz spaces. Proc. London Math. Soc. 66 (1993), 589–618. MR 1207550 | Zbl 0792.46024
[65] Triebel, H.: Relations between approximation numbers and entropy numbers. to appear in J. Approx. Theory. MR 1284581 | Zbl 0811.47020
[66] Triebel, H.: A localization property of $B_{pq}^s$ and $F_{pq}^s$ spaces. Studia Math. 109 (1994), 183–195. MR 1269775
[67] Triebel, H., Winkelvoss, H.: Intrinsic atomic characterizations of function spaces on domains. to appear. Zbl 0843.46022
[68] Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17 (1967), 473–483. MR 0216286 | Zbl 0163.36402
Partner of
EuDML logo