Previous |  Up |  Next

Article

Title: On Wiener's type regularity of a boundary point for higher order elliptic equations (English)
Author: Maz'ya, Vladimir
Language: English
Journal: Nonlinear Analysis, Function Spaces and Applications
Volume: Vol. 6
Issue: 1998
Year:
Pages: 119-155
.
Category: math
.
MSC: 31C15
MSC: 31C45
MSC: 35B60
MSC: 35B65
MSC: 35J40
MSC: 35J67
idZBL: Zbl 0966.35001
idMR: MR1777714
.
Date available: 2009-10-08T09:47:28Z
Last updated: 2012-08-03
Stable URL: http://hdl.handle.net/10338.dmlcz/702472
.
Reference: [1] Wiener N. : The Dirichlet problem.J. Math. Phys. 3 (1924), 127–146.
Reference: [2] Wiener N. : Certain notions in potential theory.J. Math. Phys. 3 (1924), 24–51.
Reference: [3] Poincaré H. : Sur les équations aux derivées partielles de la physique mathématique.Amer. J. Math. 12 (1890), 211–299. MR 1505534
Reference: [4] Zaremba S. C. : Sur le principe du minimum.Bull. Acad.Sci. Cracovie, Juillet 1909.
Reference: [5] Lebesgue H. : Sur des cas d’impossibilité du problème de Dirichlet ordinaire.C. R. des Séances de la Société Mathématique de France 17 (1913).
Reference: [6] Littman W., Stampacchia G., Weinberger H. F. : Regular points for elliptic equations with discontinuous coefficients.Ann. Scuola Norm. Sup. Pisa Serie III, 17 (1963), 43–77. Zbl 0116.30302, MR 0161019
Reference: [7] Fabes E. G., Jerison D., Kenig C. : The Wiener test for degenerate elliptic equations.Ann. Inst. Fourier (Grenoble) 32 (1982), 151–182. MR 0688024
Reference: [8] Maso G. Dal, Mosco U. : Wiener criteria and energy decay for relaxed Dirichlet problems.Arch. Rational Mech. Anal. 95 (1986), 345–387. MR 0853783
Reference: [9] Maz’ya V. G.: On the continuity at a boundary point of solutions of quasilinear elliptic equations.Vestnik Leningrad Univ., Mat. 3 (1976), 225–242; English transl.: Vestnik Leningrad Univ. 25 (1970), 42–55. MR 0274948
Reference: [10] Gariepy R., Ziemer W. P. : A regularity condition at the boundary for solutions of quasilinear elliptic equations.Arch. Rational Mech. Anal. 67 (1977), 25–39. Zbl 0389.35023, MR 0492836
Reference: [11] Adams D. R., Hedberg L. I. : Functions spaces and potential theory.Springer-Verlag, Berlin 1995. MR 1411441
Reference: [12] Lindqvist P., Martio O. : Two theorems of N. Wiener for solutions of quasilinear elliptic equations.Acta Math. 155 (1985), 153–171. Zbl 0607.35042, MR 0806413
Reference: [13] Kilpeläinen T., Malý J. : The Wiener test and potential estimates for quasilinear elliptic equations.Acta Math. 172 (1994), 137–161.
Reference: [14] Malý J., Ziemer W. P. : Regularity of solutions of elliptic partial differential equations.Mathematical Surveys and Monographs, vol. 51, American Mathematical Society, Providence, RI 1997. Zbl 0882.35001, MR 1461542
Reference: [15] Maz’ya V. G. : Sobolev spaces.Springer-Verlag, Berlin 1985. Zbl 0727.46017, MR 0817985
Reference: [16] Maz’ya V. G. : On the behavior near the boundary of solutions to the Dirichlet problem for the biharmonic operator.Dokl. Akad. Nauk SSSR, 18 (1977), 15–19. English transl.: Soviet Math. Dokl. 18 (1977), 1152–1155 (1978).
Reference: [17] Maz’ya V. G. : Behavior of solutions to the Dirichlet problem for the biharmonic operator at a boundary point.In: Equadiff IV, Lecture Notes in Math. 703, Springer-Verlag, Berlin 1979, 250–262.
Reference: [18] Maz’ya V. G. Donchev T. : On the Wiener regularity of a boundary point for the polyharmonic operator.Dokl. Bolg. AN 36 (1983), 177–179; English transl.: Amer. Math. Soc. Transl. 137 (1987), 53–55. MR 0709006
Reference: [19] Maz’ya V. G. : Unsolved problems connected with the Wiener criterion.The Legacy of Norbert Wiener: A Centennial Symposium, Proc. Symp. Pure Math. vol. 60, American Mathematical Society, Providence, RI 1997, 199-208. Zbl 0883.35050, MR 1460283
Reference: [20] Maz’ya V. G. : On the regularity at the boundary of solutions to elliptic equations and conformal mappings.Dokl. Akad. Nauk SSSR 152 (1963), 1297–1300. English transl.: Soviet Math. Dokl. 4 (1963), 1547–1551. MR 0163053
Reference: [21] Maz’ya V. G. : Behavior near the boundary of solution to the Dirichlet problem for the second order elliptic operator in divergence form.Mat. Zametki 2 (1967), 209–220. MR 0219873
Reference: [22] Maz’ya V. G. : On the continuity modulus of a harmonic function at a boundary point.Zapiski Nauch. Sem. LOMI, Leningrad, Nauka, 135 (1981), 87–95. MR 0741698
Reference: [23] Björn J., Maz’ya V. G. : Capacitary estimates for solutions of the Dirichlet problem for second order elliptic equations in divergence form.Report LiTH-MAT-R-97-16, Linköping University. Zbl 0961.35035
Reference: [24] Maz’ya V. G. Tashchiyan G. M. : On the behavior of the gradient of a solution of the Dirichlet problem for the biharmonic equation near a boundary point of a three-dimensional domain.Sibirsk. Math. Zh. 31 (1990), 113–126. English transl.: Siberian Math. J. 31 (1991), 970–982. MR 1097961
Reference: [25] Maz’ya V. G. Plamenevskii B. A. : On the maximum principle for the biharmonic equation in a domain with conic points.Izv. Vyssh. Ucheb. Zaved. Mat. 2 (1981), 52–59. English transl.: Soviet Math. (Izv. VUZ) 25 (1981), 61–70. MR 0614817
Reference: [26] Maz’ya V. G. Plamenevskii B. A. : Properties of solutions to three-dimensional problems of elasticity theory and hydrodynamics in domains with isolated singular points.Dinamika sploshnoy sredy, Novosibirsk 50 (1981), 99–121. MR 0639068
Reference: [27] Maz’ya V. G. Nasarow S. A., Plamenevskii B. A. : Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten.1, Akademie-Verlag, Berlin 1991.
Reference: [28] Maz’ya V. G. Nazarov S. A. : The vertex of a cone can be irregular in the Wiener sense for an elliptic equation of the fourth order.Mat. Zametki 39 (1986), 24–28. English transl.: Math. Notes 39 (1986), 14–16. MR 0830840
Reference: [29] Kozlov V. A., Maz’ya V. G. : Spectral properties of operator pencils generated by elliptic boundary value problems in a cone.Funktsional. Anal. i Prilozhen. 22 (1988), 38–46. English transl.: Functional Anal. Appl. 22 (1988), 114–121. MR 0947604
Reference: [30] Landkof N. S. : Foundations of modern potential theory.Springer-Verlag, Berlin 1972. Zbl 0253.31001, MR 0350027
Reference: [31] Carathéodory C. : Vorlesungen über reelle Funktionen.Leipzig and Berlin, 1918.
Reference: [32] Vainberg M. M. : Variational methods for the study of nonlinear operators.Holden-Day, San Francisco 1964. Zbl 0122.35501, MR 0176364
Reference: [33] Eilertsen S. : On weighted positivity of certain differential and pseudodifferential operators.Linköping Studies in Science and Technology. Theses No. 617, 1997.
.

Files

Files Size Format View
NAFSA_098-1998-1_6.pdf 424.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo