[3] Galaktionov, V. A., Vazquez, J. L.:
Extinction for a quasilinear heat equation with absorption I. Technique of intersection comparison. Commun. in Partial Differential Equations, 19 (1994), pp. 1075–1106.
DOI 10.1080/03605309408821046 |
MR 1284802
[4] Galaktionov, V. A., Vazquez, J. L.:
Extinction for a quasilinear heat equation with absorption II. A dynamical systems approach. Commun. in Partial Differential Equations, 19 (1994), pp. 1107–1137.
DOI 10.1080/03605309408821047 |
MR 1284803
[6] Nakaki, T., Tomoeda, K.:
A finite difference scheme for some nonlinear diffusion equations in an absorbing medium: support splitting phenomena. SIAM J. Numer. Anal., 40 (2002), pp. 945–964.
DOI 10.1137/S0036142900380303 |
MR 1949400
[7] Polubarinova-Kochina, P.Y.:
Theory of Ground Water Movement. Princeton Univ. Press, 1962.
MR 0142252
[8] Rosenau, P., Kamin, S.:
Thermal waves in an absorbing and convecting medium. Physica, 8D (1983), pp. 273–283.
MR 0724593
[9] Scheidegger, A.E.:
The Physics of Flow through Porous Media. Third edition, University of Toronto Press, 1974.
MR 0127717
[10] Tomoeda, K.:
Numerically repeated support splitting and merging phenomena in a porous media equation with strong absorption. Journal Math-for-Industry of Kyushu, 3 (2012), pp. 61–68.
MR 2888003
[11] Tomoeda, K.:
Appearance of repeated support splitting and merging phenomena in a porous media equation with absorption. Application of Mathematics in Technical and Natural Sciences (AMiTaNS’15), AIP Conference Proceedings, 1684 (2015), pp. 080013-1–080013-9.
DOI 10.1063/1.4934324 |
MR 2888003
[12] HASH(0x2e2c438): [12] D. Gilbarg and N. S. Trudinger, //Elliptic Partial Differential Equations of Second Order, Second Edition, Revised Third Printing 1998, Springer.
MR 1063848