Title:
|
A well-posedness result for a mass conserved Allen-Cahn equation with nonlinear diffusion (English) |
Author:
|
Kettani, Perla El |
Author:
|
Hilhorst, Danielle |
Author:
|
Lee, Kai |
Language:
|
English |
Journal:
|
Proceedings of Equadiff 14 |
Volume:
|
Conference on Differential Equations and Their Applications, Bratislava, July 24-28, 2017 |
Issue:
|
2017 |
Year:
|
|
Pages:
|
201-210 |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we prove the existence and uniqueness of the solution of the initial boundary value problem for a stochastic mass conserved Allen-Cahn equation with nonlinear diffusion together with a homogeneous Neumann boundary condition in an open bounded domain of $\mathbb{R}^n$ with a smooth boundary. We suppose that the additive noise is induced by a Q-Brownian motion. (English) |
Keyword:
|
Stochastic nonlocal reaction-diffusion equation, monotonicity method, conservation of mass |
MSC:
|
35K55 |
MSC:
|
35K57 |
MSC:
|
60H15 |
MSC:
|
60H30 |
. |
Date available:
|
2019-09-27T07:57:39Z |
Last updated:
|
2019-09-27 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/703058 |
. |
Reference:
|
[1] Antonopoulou, D. C., HASH(0x2b12e48), Bates, P. W., Bl\"omker, D., Karali, G. D.: Motion of adroplet for the stochastic mass-conserving Allen-Cahn equation., in SIAM J. Math. Anal. 48 (2016), pp. 670–708. MR 3459976, 10.1137/151005105 |
Reference:
|
[2] Bauzet, C., Vallet, G., Wittbold, P.: The Cauchy problem for conservation laws with a multiplicative stochastic perturbation., J. Hyperbolic Differ. Equ. 9,4 (2012), pp. 661-709. MR 3021756, 10.1142/S0219891612500221 |
Reference:
|
[3] Bennett, C., Sharpley, R.: Interpolation of Operators., Academic Press, Vol. 129 (1988). MR 0928802 |
Reference:
|
[4] Boussaı̈d, S., Hilhorst, D., Nguyen, T.: Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation., Evol. Equ. Control Theory 4,1 (2015), pp. 39-59. MR 3356465, 10.3934/eect.2015.4.39 |
Reference:
|
[5] Prato, G. Da, J.Zabczyk,: Stochastic equations in infinite dimensions., Second edition. Encyclopedia of Mathematics and its Applications, 152 (2014), Cambridge University Press, Cambridge. MR 3236753 |
Reference:
|
[6] Kettani, P. El, Hilhorst, D., K.Lee,: A stochastic mass conserved reaction-diffusion equation with nonlinear diffusion., preprint. MR 3917782 |
Reference:
|
[7] Gess, B.: Strong solutions for stochastic partial differential equations of gradient type., J. of Functional Analysis, vol. 263, no. 8 (2012), pp. 2355-2383. MR 2964686, 10.1016/j.jfa.2012.07.001 |
Reference:
|
[8] Krylov, N. V., Rozovskii, B. L.: Stochastic evolution equations., J. of Soviet Mathematics, vol. 14 (1981), pp. 1233-1277. MR 0570795, 10.1007/BF01084893 |
Reference:
|
[9] Marion, M.: Attractors for reaction-diffusion equations: existence and estimate of their dimension., Applicable Analysis: An International Journal, 25:1-2 (1987), pp. 101-147. MR 0911962, 10.1080/00036818708839678 |
Reference:
|
[10] Rubinstein, J., Sternberg, P.: Nonlocal reaction-diffusion equations and nucleation., IMA J. of Applied Mathematics, 48 (1992), pp. 249-264. MR 1167735, 10.1093/imamat/48.3.249 |
Reference:
|
[11] HASH(0x2b33508): .[11] R.Temam, //Navier-stokes equations/, Amsterdam: North-Holland, Vol. 2, revised edition (1979). MR 0603444 |
. |