Previous |  Up |  Next


magnetoelastic materials; Landau-Lifshitz-Gilbert equation; dimensional reduction
The paper deals with the dimensional reduction from 2D to 1D in magnetoelastic interactions. We adopt a simplified, but nontrivial model described by the Landau-Lifshitz-Gilbert equation for the magnetization field coupled to an evolution equation for the displacement. We identify the limit problem by using the so-called energy method.
[1] Aharoni, A.: Introduction to the Theory of Ferromagnetism. Oxford University Press London (1996).
[2] Brown, W. F.: Magnetoelastic Interactions. Springer Tracts in Natural Philosophy, Vol. 9. Springer New York-Heidelberg-Berlin (1966). DOI 10.1007/978-3-642-87396-6
[3] Ciarlet, P. G.: Introduction to Linear Shell Theory. Gauthier-Villars Paris (1998). MR 1648549 | Zbl 0912.73001
[4] Ciarlet, P. G., Destuynder, Ph.: A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979), 315-344. MR 0533827 | Zbl 0415.73072
[5] Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures. Springer New York-Berlin (1998).
[6] Landau, L. D., Lifshitz, E. M.: Electrodynamics of Continuous Media. Pergamon Press Oxford (1986). MR 0766230
[7] Lions, J.-L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod & Gauthier-Villars Paris (1969), French. MR 0259693 | Zbl 0189.40603
[8] Simon, J.: Compact sets in the space $L^p(0,T;B)$. Ann. Mat. Pura Appl. 146 (1987), 65-96. MR 0916688
[9] Valente, V.: An evolutive model for magnetorestrictive interactions: existence of weak solutions. SPIE-Proceeding on Smart Structures and Materials, Modeling, Signal Processing and Control Elsevier Amsterdam (2006).
Partner of
EuDML logo