11 Number theory
11Gxx Arithmetic algebraic geometry (Diophantine geometry)
11G05 Elliptic curves over global fields (12 articles)
-
Chakraborty, Kalyan; Sharma, Richa:
On a family of elliptic curves of rank at least 2.
(English).
Czechoslovak Mathematical Journal,
vol. 72
(2022),
issue 3,
pp. 681-693
-
Rout, Sudhansu Sekhar; Juyal, Abhishek:
The Mordell-Weil bases for the elliptic curve $y^2=x^3-m^2x+m^2$.
(English).
Czechoslovak Mathematical Journal,
vol. 71
(2021),
issue 4,
pp. 1133-1147
-
Cai, Tianxin; Zhang, Yong:
A variety of Euler's sum of powers conjecture.
(English).
Czechoslovak Mathematical Journal,
vol. 71
(2021),
issue 4,
pp. 1099-1113
-
Vrećica, Ilija S.:
Joint distribution for the Selmer ranks of the congruent number curves.
(English).
Czechoslovak Mathematical Journal,
vol. 70
(2020),
issue 1,
pp. 105-119
-
Yang, Hai; Fu, Ruiqin:
Integral points on the elliptic curve $y^2=x^3-4p^2x$.
(English).
Czechoslovak Mathematical Journal,
vol. 69
(2019),
issue 3,
pp. 853-862
-
Lee, Jung-Jo:
On the ranks of elliptic curves in families of quadratic twists over number fields.
(English).
Czechoslovak Mathematical Journal,
vol. 64
(2014),
issue 4,
pp. 1003-1018
-
Yang, Hai; Fu, Ruiqin:
The integral points on elliptic curves $y^2=x^3+(36n^2 -9)x-2(36n^2-5)$.
(English).
Czechoslovak Mathematical Journal,
vol. 63
(2013),
issue 2,
pp. 375-383
-
Lemmermeyer, F.:
Why is the class number of $\mathbb Q(\root 3\of {11})$ even?.
(English).
Mathematica Bohemica,
vol. 138
(2013),
issue 2,
pp. 149-163
-
Bandini, Andrea:
3-Selmer groups for curves $y^2=x^3+a$.
(English).
Czechoslovak Mathematical Journal,
vol. 58
(2008),
issue 2,
pp. 429-445
-
Hlaváček, Miloslav:
On the set of solutions of the system $x\sb 1+x\sb 2+x\sb 3=1, x\sb 1x\sb 2x\sb 3=1$.
(English).
Mathematica Bohemica,
vol. 123
(1998),
issue 1,
pp. 1-6
-
Nekovář, Jan:
Modulární křivky a Fermatova věta.
(Czech) [Modular curves and Fermat's theorem].
Mathematica Bohemica,
vol. 119
(1994),
issue 1,
pp. 79-96
-
Ribet, Kenneth A.:
Wiles dokázal Taniyamovu hypotézu; důsledkem je Fermatova věta.
(Czech) [Wiles proves Taniyama's conjecture; Fermat's last theorem follows].
Mathematica Bohemica,
vol. 119
(1994),
issue 1,
pp. 75-78