Previous |  Up |  Next

Article

Keywords:
elliptic curve; Mordell-Weil group; canonical height
Summary:
Let $D_m$ be an elliptic curve over $\mathbb {Q}$ of the form $y^2 = x^3 -m^2x +m^2$, where $m$ is an integer. In this paper we prove that the two points $P_{-1}=(-m, m)$ and $P_0 = (0, m)$ on $D_m$ can be extended to a basis for $D_m(\mathbb {Q})$ under certain conditions described explicitly.
References:
[1] Antoniewicz, A.: On a family of elliptic curves. Univ. Iagell. Acta Math. 43 (2005), 21-32. MR 2331469 | Zbl 1116.11036
[2] Brown, E., Myers, B. T.: Elliptic curves from Mordell to Diophantus and back. Am. Math. Mon. 109 (2002), 639-649. DOI 10.2307/3072428 | MR 1917222 | Zbl 1083.11037
[3] Cannon, J., Bosma, W., Fieker, C., (eds.), A. Steel: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Sydney (2006).
[4] Eikenberg, E. V.: Rational Points on Some Families of Elliptic Curves: Ph.D. Thesis. University of Maryland, College Park (2004). MR 2705712
[5] Fujita, Y.: Generators for the elliptic curve $y^2=x^3-nx$ of rank at least three. J. Number Theory 133 (2013), 1645-1662. DOI 10.1016/j.jnt.2012.10.011 | MR 3007126 | Zbl 1295.11060
[6] Fujita, Y.: Generators for congruent number curves of ranks at least two and three. J. Ramanujan Math. Soc. 29 (2014), 307-319. MR 3265063 | Zbl 1316.11043
[7] Fujita, Y., Nara, T.: On the Mordell-Weil group of the elliptic curve $y^2=x^3+n$. J. Number Theory 132 (2012), 448-466. DOI 10.1016/j.jnt.2011.09.003 | MR 2875349 | Zbl 1308.11059
[8] Fujita, Y., Nara, T.: The Mordell-Weil bases for the elliptic curve of the form $y^2=x^3- m^2x+n^2$. Publ. Math. 92 (2018), 79-99. DOI 10.5486/PMD.2018.7719 | MR 3764079 | Zbl 1413.11081
[9] Fujita, Y., Terai, N.: Generators for the elliptic curve $y^2=x^3-nx$. J. Théor. Nombres Bordx. 23 (2011), 403-416. DOI 10.5802/jtnb.769 | MR 2817937 | Zbl 1228.11081
[10] Juyal, A., Kumar, S. D.: On the family of elliptic curves $y^2=x^3-m^2x+p^2$. Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. DOI 10.1007/s12044-018-0433-0 | MR 3869527 | Zbl 1448.11104
[11] Oguiso, K., Shioda, T.: The Mordell-Weil lattice of a rational elliptic surface. Comment. Math. Univ. St. Pauli 40 (1991), 83-99. MR 1104782 | Zbl 0757.14011
[12] Shioda, T.: On the Mordell-Weil lattices. Comment. Math. Univ. St. Pauli 39 (1990), 211-240. MR 1081832 | Zbl 0725.14017
[13] Siksek, S.: Infinite descent on elliptic curves. Rocky Mt. J. Math. 25 (1995), 1501-1538. DOI 10.1216/rmjm/1181072159 | MR 1371352 | Zbl 0852.11028
[14] Silverman, J. H.: Computing heights on elliptic curves. Math. Comput. 51 (1988), 339-358. DOI 10.1090/S0025-5718-1988-0942161-4 | MR 942161 | Zbl 0656.14016
[15] Silverman, J. H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 151. Springer, New York (1994). DOI 10.1007/978-1-4612-0851-8 | MR 1312368 | Zbl 0911.14015
[16] Silverman, J. H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics 106. Springer, New York (2009). DOI 10.1007/978-0-387-09494-6 | MR 2514094 | Zbl 1194.11005
[17] Tadić, P.: On the family of elliptic curves $Y^2=X^3-T^2X+1$. Glas. Mat., III. Ser. 47 (2012), 81-93. DOI 10.3336/gm.47.1.06 | MR 2942776 | Zbl 1254.11057
[18] Tadić, P.: The rank of certain subfamilies of the elliptic curve $Y^2=X^3-X+T^2$. Ann. Math. Inform. 40 (2012), 145-153. MR 3005123 | Zbl 1274.11109
Partner of
EuDML logo