11 Number theory
11Rxx Algebraic number theory: global fields
11R09 Polynomials (irreducibility, etc.) (9 articles)
-
Shparlinski, Igor E.:
On the Győry-Sárközy-Stewart conjecture in function fields.
(English).
Czechoslovak Mathematical Journal,
vol. 68
(2018),
issue 4,
pp. 1067-1077
-
Ugolini, Simone:
On an iterated construction of irreducible polynomials over finite fields of even characteristic by Kyuregyan.
(English).
Czechoslovak Mathematical Journal,
vol. 66
(2016),
issue 1,
pp. 243-250
-
Dilcher, Karl; Ericksen, Larry:
Reducibility and irreducibility of Stern $(0,1)$-polynomials.
(English).
Communications in Mathematics,
vol. 22
(2014),
issue 1,
pp. 77-102
-
Pezda, Tadeusz:
On some issues concerning polynomial cycles.
(English).
Communications in Mathematics,
vol. 21
(2013),
issue 2,
pp. 129-135
-
Dubickas, Artūras:
Mahler measures in a cubic field.
(English).
Czechoslovak Mathematical Journal,
vol. 56
(2006),
issue 3,
pp. 949-956
-
Cavachi, Marius; Vâjâitu, Marian; Zaharescu, Alexandru:
An irreducibility criterion for polynomials in several variables.
(English).
Acta Mathematica Universitatis Ostraviensis,
vol. 12
(2004),
issue 1,
pp. 13-18
-
Dubickas, Artūras:
Nonreciprocal algebraic numbers of small measure.
(English).
Commentationes Mathematicae Universitatis Carolinae,
vol. 45
(2004),
issue 4,
pp. 693-697
-
Marko, František:
Polynomials of the form $g(x\sp k)$ and pseudoprimes with respect to linear recurring sequences.
(English).
Mathematica Slovaca,
vol. 42
(1992),
issue 5,
pp. 621-639
-
Schinzel, Andrzej:
A class of polynomials.
(English).
Mathematica Slovaca,
vol. 41
(1991),
issue 3,
pp. 295-298