Previous |  Up |  Next

Article

Keywords:
Stern sequence; Stern polynomials; reducibility; irreducibility; cyclotomic polynomials; discriminants; zeros
Summary:
The classical Stern sequence was extended by K.B. Stolarsky and the first author to the Stern polynomials $a(n;x)$ defined by $a(0;x)=0$, $a(1;x)=1$, $a(2n;x)=a(n;x^2)$, and $a(2n+1;x)=x\,a(n;x^2)+a(n+1;x^2)$; these polynomials are Newman polynomials, i.e., they have only 0 and 1 as coefficients. In this paper we prove numerous reducibility and irreducibility properties of these polynomials, and we show that cyclotomic polynomials play an important role as factors. We also prove several related results, such as the fact that $a(n;x)$ can only have simple zeros, and we state a few conjectures.
References:
[1] Dilcher, K., Ericksen, L.: The polynomials of Mahler and roots of unity. Amer. Math. Monthly. (To appear)..
[2] Dilcher, K., Ericksen, L.: Identities and restricted quotients in the Stern sequence. (In preparation)..
[3] Dilcher, K., Stolarsky, K.B.: A polynomial analogue to the Stern sequence. Int. J. Number Theory, 3, 1, 2007, 85-103, DOI 10.1142/S179304210700081X | MR 2310494 | Zbl 1117.11017
[4] Dilcher, K., Stolarsky, K.B.: Stern polynomials and double-limit continued fractions. Acta Arith., 140, 2, 2009, 119-134, DOI 10.4064/aa140-2-2 | MR 2558448 | Zbl 1250.11016
[5] Filaseta, M., Ford, K., Konyagin, S: On an irreducibility theorem of A. Schinzel associated with coverings of the integers. Illinois J. Math., 44, 3, 2000, 633-643, MR 1772434 | Zbl 0966.11046
[6] Filaseta, M., (Jr.), M. Matthews: On the irreducibility of 0,1-polynomials of the form $f(x)x^n+g(x)$. Colloq. Math., 99, 1, 2004, 1-5, DOI 10.4064/cm99-1-1 | MR 2084532 | Zbl 1060.11066
[7] Finch, C., Jones, L.: On the irreducibility of ${-1,0,1}$-quadrinomials. Integers, 6, 2006, A16, 4 pp.. MR 2247810 | Zbl 1094.11013
[8] Klavžar, S., Milutinović, U., Petr, C.: Stern polynomials. Adv. in Appl. Math., 39, 2007, 86-95, DOI 10.1016/j.aam.2006.01.003 | MR 2319565 | Zbl 1171.11016
[9] Lehmer, D.H.: On Stern's diatomic series. Amer. Math. Monthly, 36, 1929, 59-67, DOI 10.2307/2299356 | MR 1521653
[10] Ljunggren, W.: On the irreducibility of certain trinomials and quadrinomials. Math. Scand., 8, 1960, 65-70, MR 0124313 | Zbl 0095.01305
[11] Mahler, K.: On the zeros of a special sequence of polynomials. Math. Comp., 39, 159, 1982, 207-212, DOI 10.1090/S0025-5718-1982-0658225-3 | MR 0658225 | Zbl 0486.30003
[12] Mercer, I.: Newman polynomials, reducibility, and roots on the unit circle. Integers, 12, 2012, 503-519, DOI 10.1515/integers-2011-0120 | MR 2988531 | Zbl 1279.12002
[13] Mills, W.H.: The factorization of certain quadrinomials. Math. Scand., 57, 1985, 44-50, MR 0815429
[14] Murty, M.R.: Prime numbers and irreducible polynomials. Amer. Math. Monthly, 109, 2002, 452-458, DOI 10.2307/2695645 | MR 1901498 | Zbl 1053.11020
[15] (2011), OEIS Foundation Inc.: The On-Line Encyclopedia of Integer Sequences. http://oeis.org
[16] Rivlin, T.J.: Chebyshev Polynomials, second edition. 1990, Wiley, New York, MR 1060735
[17] Schinzel, A.: On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas). Publ. Math. Debrecen, 79, 1--2, 2011, 83-88, MR 2850035 | Zbl 1274.11067
[18] Selmer, E.S.: On the irreducibility of certain trinomials. Math. Scand., 4, 1956, 287-302, MR 0085223 | Zbl 0077.24602
[19] Tuckerman, B.: Factorization of $x^{2n}+x^n+1$ using cyclotomic polynomials. Math. Magazine, 42, 1, 1969, 41-42, DOI 10.2307/2688041 | MR 1571793
[20] Ulas, M.: On certain arithmetic properties of Stern polynomials. Publ. Math. Debrecen, 79, 1--2, 2011, 55-81, DOI 10.5486/PMD.2011.4922 | MR 2850034 | Zbl 1274.11068
[21] Vargas, A.R.: Zeros and convergent subsequences of Stern polynomials. J. Math. Anal. Appl., 398, 2013, 630-637, DOI 10.1016/j.jmaa.2012.09.035 | MR 2990088 | Zbl 1271.11027
[22] Weisstein, E.W.: Cyclotomic Polynomial. From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/CyclotomicPolynomial.html
Partner of
EuDML logo