[1] Algoet, P. H., Cover, T. M.:
Asymptotic optimality and asymptotic equipartition properties of log-optimum investment. Ann. Probab. 16 (1988), 2, 876-898.
DOI 10.1214/aop/1176991793 |
MR 0929084
[4] Bayer, Ch., Veliyev, B.:
Utility Maximization in a Binomial Model with Transaction Costs: a Duality Approach Based on the Shadow Price Process. arXiv: 1209.5175.
MR 3224442
[6] Choi, J. H., Sirbu, M., Zitkovix, G.:
Shadow Prices and well-posedness in the problem of optimal investment and consumption with transaction costs. SIAM J. Control Optim. 51 (2013), 6, 4414-4449.
DOI 10.1137/120881373 |
MR 3141745
[10] Breiman, L.:
Optimal gambling system for flavorable games. In: Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 1 (J. Neyman, ed.), Univ. of Calif. Press, Berkeley 1961, pp. 65-78.
MR 0135630
[13] Dostál, P.: Almost optimal trading strategies for small transaction costs and a HARA utility function. J. Comb. Inf. Syst. Sci. 38 (2010), 257-291.
[14] Dostál, P.:
Futures trading with transaction costs. In: Proc. ALGORITMY 2009. (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak Univ. of Tech. in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428.
Zbl 1184.91199
[15] Dostál, P.:
Investment strategies in the long run with proportional transaction costs and HARA utility function. Quant. Finance 9 (2009), 2, 231-242.
DOI 10.1080/14697680802039873 |
MR 2512992
[19] Herczegh, A., Prokaj, V.:
Shadow\! Price in the Power Utility Case. arXiv: 1112.4385.
MR 3375886
[20] Janeček, K.: Optimal Growth in Gambling and Investing. MSc Thesis, Charles University Prague 1999.
[21] Janeček, K., Shreve, S. E.:
Asymptotic analysis for optimal investment and consumption with transaction costs. Finance Stoch. 8 (2004), 2, 181-206.
DOI 10.1007/s00780-003-0113-4 |
MR 2048827
[22] Janeček, K., Shreve, S. E.:
Futures trading with transaction costs. Illinois J. Math. 54 (2010), 4, 1239-1284.
MR 2981847 |
Zbl 1276.91094
[24] Kallsen, J., Muhle-Karbe, J.:
On using shadow in portfolio optimization with transaction costs. Ann. Appl. Probab. 20 (2010), 4, 1341-1358.
DOI 10.1214/09-aap648 |
MR 2676941
[26] Kallsen, J., Muhle-Karbe, J.: The General Structure of Optimal Investment and Consumption with Small Transaction Costs. arXiv: 1303.3148.
[34] Samuelson, P. A.:
The ``fallacy" of maximizing the geometric mean in long sequences of investing or gambling. Proc. Natl. Acad. Sci. 68 (1971), 10, 2493-2496.
DOI 10.1073/pnas.68.10.2493 |
MR 0295739
[35] Sass, J., Schäl, M.:
Numeraire portfolios and utility-based price systems under proportional transaction costs. Decis. Econ. Finance 37 (2014), 2, 195-234.
DOI 10.1007/s10203-012-0132-8 |
MR 3260886
[37] Skorokhod, A.:
Stochastic equations for diffusion processes in a bounded region. Theory Probab. Appl. 6 (1961), 3, 264-274.
DOI 10.1137/1106035 |
Zbl 0201.49302
[38] Skorokhod, A.:
Stochastic equations for diffusion processes in a bounded region II. Theory Probab. Appl. 7 (1962), 1, 3-23.
DOI 10.1137/1107002 |
Zbl 0201.49302
[39] Thorp, E.:
Portfolio choice and the Kelly criterion. In: Stochastic Optimization Models in Finance (W. T. Ziemba and R. G. Vickson, eds.), Acad. Press, Bew York 1975, pp. 599-619.
DOI 10.1016/b978-0-12-780850-5.50051-4
[40] Thorp, E.: The Kelly criterion in blackjack, sports betting and the stock market. In: Finding the Edge: Mathematical Analysis of Casino Games (O. Vancura, J. A. Cornelius and W. R. Eadington, eds.), Institute for the Study of Gambling and Commercial Gaming, Reno 2000, pp. 163-213.