[2] Dupačová, J., Wets, R. J.-B.:
Asymptotic behaviour of statistical estimates and optimal solutions of stochastic optimization problems. Ann. Statist. 16 (1984), 1517-1549.
DOI 10.1214/aos/1176351052 |
MR 0964937
[3] Dupačová, J., Hurt, J., Štěpán, J.:
Stochastic Modelling in Economics and Finance. Kluwer, Dordrecht 2002.
MR 2008457
[5] Houda, M., Kaňková, V.: Empirical estimates in economic and financial optimization problems. Bull. Czech Econometr. Soc. 19 (2012), 29, 50-69.
[6] Kaniovski, Y. M., King, A. J., Wets, R. J.-B.:
Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189-208.
DOI 10.1007/bf02031707 |
MR 1339792 |
Zbl 0835.90055
[7] Kaňková, V.:
Optimum solution of a stochastic optimization problem with unknown parameters. In: Trans. 7th. Prague Conf. 1974, Academia, Prague 1977, pp. 239-244.
MR 0519478
[9] Kaňková, V.:
Uncertainty in stochastic programming. In: Proc. Inter. Conf. on Stoch. Optim., Kiev 1984 (V. I Arkin and R. J.-B. Wets, eds.), Lecture Notes in Control and Information Sciences 81, Springer, Berlin 1986, pp. 393-401.
DOI 10.1007/bfb0007116 |
MR 0891003
[10] Kaňková, V.:
On the stability in stochastic programming: the case of individual probability constraints. Kybernetika 33 (1997), 5, 525-546.
MR 1603961 |
Zbl 0908.90198
[11] Kaňková, V., Houda, M.:
Empirical estimates in stochastic programming. In: Proc. Prague Stochastics 2006 (M. Hušková and M. Janžura, eds.), MATFYZPRESS, Prague 2006, pp. 426-436.
Zbl 1162.90528
[12] Kaňková, V.:
Multistage stochastic programs via autoregressive sequences and individual probability constraints. Kybernetika 44 (2008), 2, 151-170.
MR 2428217
[13] Kaňková, V.: Empirical estimates in optimization problems; survey with special regard to heavy tails and dependent samples. Bull.Czech Econometric. soc. 19 (2012), 30, 92-111.
[15] Kaňková, V.: Scenario generation via ${\cal L}_{1} $ norm. In: Proc. 33rd Inter. Conf. Mathematical Methods in Economics 2015 (D. Marinčík, J. Ircingová and P. Janeček, eds.), Published by West Bohemia, Plzeň 2015, pp. 331-336.
[16] Kaňková, V.: A note on optimal value of loans. In: Proc. 34th Inter. Conf. Mathematical methods in economics 2016 (A. Kocourek and M. Vavroušek, eds.), Technical University Liberec, Liberec 2016, pp, 371-376.
[18] Pflug, G. Ch.:
Scenarion tree generation for multiperiod finncial optimization by optimal discretizatin. Math. Program. Ser. B 89 (2001), 251-271.
DOI 10.1007/pl00011398 |
MR 1816503
[19] Pflug, G. Ch.:
Stochastic Optimization and Statistical Inference. In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol. 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 427-480.
DOI 10.1016/s0927-0507(03)10007-2 |
MR 2051793
[21] Römisch, W., Schulz, R.:
Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590-609.
DOI 10.1287/moor.18.3.590 |
MR 1250562
[22] Römisch, W.:
Stability of Stochastic Programming Problems. In: Stochastic Programming, Handbooks in Operations Research and Managemennt Science, Vol. 10 (A. Ruszczynski and A. A. Shapiro, eds.), Elsevier, Amsterdam 2003, pp. 483-554.
DOI 10.1016/s0927-0507(03)10008-4 |
MR 2051791
[26] Shapiro, A., Dentcheva, D., Ruszczynski, A.:
Lectures on Stochastic Programming (Modeling and Theory). Published by Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia 2009.
DOI 10.1137/1.9780898718751 |
MR 2562798 |
Zbl 1302.90003
[27] Šmíd, M.:
The expected loss in the discretization of multistage stochastic programming problems-estimation and convergence rate. Ann. Oper. Res. 165 (2009), 29-45.
DOI 10.1007/s10479-008-0355-9 |
MR 2470981
[30] Wets, R. J. B.:
A Statistical Approach to the Solution of Stochastic Programs with (Convex) Simple Recourse. Research Report, University Kentucky 1974.
MR 0727454