[2] Bérczes, A., Pink, I.:
On the Diophantine equation $x^2+p^{2k}=y^n$. Arch. Math. (Basel) 91 (2008), 505–517.
MR 2465869 |
Zbl 1175.11018
[3] Bérczes, A., Pink, I.:
On generalized Lebesgue-Ramanujan-Nagell equations. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57.
MR 3187736
[4] Bilu, Y., Hanrot, G., Voutier, P.M.:
Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte). J. Reine Angew. Math. 539 (2001), 75–122.
MR 1863855
[6] Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G.:
On the Diophantine equation $x^2+2^{a}3^{b}11^{c}=y^n$. Math. Slovaca 63 (2013), 647–659.
MR 3071982
[7] Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G.:
On the Diophantine equation $x^2+2^a11^b=y^n$. Fibonacci Q. 48 (2010), 39–46.
MR 2663418
[8] Carmichael, R.D.:
On the numerical factors of the arithmetic forms $ \alpha ^n -\beta ^n $. Ann. Math. 2 (1913), 30–70.
MR 1502459
[9] Chakraborty, K., Hoque, A., Sharma, R.:
On the solutions of certain Lebesgue-Ramanujan-Nagell equations. Rocky Mountain J. Math. 51 (2021), 459–471.
DOI 10.1216/rmj.2021.51.459 |
MR 4278721
[10] Ghadermarzi, A.:
On the Diophantine equations $ x^2+2^\alpha 3^\beta 19^\gamma =y^n $ and $ x^2+2^\alpha 3^\beta 13^\gamma =y^n $. Math. Slovaca 69 (2019), 507–520.
MR 3954019
[11] Godinho, H., Marques, D., Togbé, A.:
On the Diophantine equation $x^2+C=y^n$ for $C = 2^{a}3^{b}17^{c}$ and $C = 2^{a}13^{b}17^{c}$. Math. Slovaca 66 (2016), 565–574.
MR 3543720
[12] Le, M.H., Soydan, G.:
A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation. Surv. Math. Appl. 15 (2020), 473–523.
MR 4118124
[13] Luca, F.:
On the equation $x^2+2^{a}3^{b}=y^n$. Int. J. Math. Math. Sci. 29 (2002), 239–244.
MR 1897992
[14] Luca, F., Togbé, A.:
On the equation $x^2+2^{a}5^{b}=y^n$. Int. J. Number Theory 4 (2008), 973–979.
MR 2483306
[15] Luca, F., Togbé, A.:
On the equation $x^2+2^{\alpha }13^{\beta }=y^n$. Colloq. Math. 116 (2009), 139–146.
MR 2504836
[18] Pink, I., Rabai, Z.:
On The Diophantine equation $x^2+5^{k}17^{l}=y^n$. Commun. Math. 19 (2011), 1–9.
MR 2855388
[19] Soydan, G., Tzanakis, N.:
Complete solution of the Diophantine equation $x^2+5^{a}11^{b}=y^n$. Bull. Hellenic Math. Soc. 60 (2016), 125–152.
MR 3622880
[20] Soydan, G., Ulas, M., Zhu, H.:
On the Diophantine equation $x^2+2^{a}19^{b}=y^n$. Indian J. Pure Appl. Math. 43 (2012), 251–261.
MR 2955592
[21] Tho, N.X.:
Solutions to A Lebesgue-Nagell equation. Bull. Aust. Math. Soc. 105 (2022), 19–30.
MR 4365058