Previous |  Up |  Next

Article

Title: On the diophantine equation $x^2+2^a3^b73^c=y^n $ (English)
Author: Alan, Murat
Author: Aydin, Mustafa
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 5
Year: 2023
Pages: 411-420
Summary lang: English
.
Category: math
.
Summary: In this paper, we find all integer solutions $ (x, y, n, a, b, c) $ of the equation in the title for non-negative integers $ a, b$ and $ c $ under the condition that the integers $ x $ and $ y $ are relatively prime and $ n \ge 3$. The proof depends on the famous primitive divisor theorem due to Bilu, Hanrot and Voutier and the computational techniques on some elliptic curves. (English)
Keyword: diophantine equations
Keyword: primitive divisor theorem
Keyword: Ramanujan-Nagell equations
MSC: 11D59
MSC: 11D61
MSC: 11Y50
idZBL: Zbl 07790556
idMR: MR4641955
DOI: 10.5817/AM2023-5-411
.
Date available: 2023-08-15T13:39:51Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151797
.
Reference: [1] Alan, M., Zengin, U.: On the Diophantine equation $x^2+3^a41^b=y^n$.Period. Math. Hung. 81 (2020), 284–291. MR 4169906, 10.1007/s10998-020-00321-6
Reference: [2] Bérczes, A., Pink, I.: On the Diophantine equation $x^2+p^{2k}=y^n$.Arch. Math. (Basel) 91 (2008), 505–517. Zbl 1175.11018, MR 2465869
Reference: [3] Bérczes, A., Pink, I.: On generalized Lebesgue-Ramanujan-Nagell equations.An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 22 (2014), 51–57. MR 3187736
Reference: [4] Bilu, Y., Hanrot, G., Voutier, P.M.: Existence of primitive divisors of Lucas and Lehmer numbers (with Appendix by Mignotte).J. Reine Angew. Math. 539 (2001), 75–122. MR 1863855
Reference: [5] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language.J. Symbolic Comput. 24 (1997), 235–265. Zbl 0898.68039, MR 1484478, 10.1006/jsco.1996.0125
Reference: [6] Cangúl, I.N., Demirci, M., Inam, M., Luca, F., Soydan, G.: On the Diophantine equation $x^2+2^{a}3^{b}11^{c}=y^n$.Math. Slovaca 63 (2013), 647–659. MR 3071982
Reference: [7] Cangúl, I.N., Demirci, M., Luca, F., Pintér, A., Soydan, G.: On the Diophantine equation $x^2+2^a11^b=y^n$.Fibonacci Q. 48 (2010), 39–46. MR 2663418
Reference: [8] Carmichael, R.D.: On the numerical factors of the arithmetic forms $ \alpha ^n -\beta ^n $.Ann. Math. 2 (1913), 30–70. MR 1502459
Reference: [9] Chakraborty, K., Hoque, A., Sharma, R.: On the solutions of certain Lebesgue-Ramanujan-Nagell equations.Rocky Mountain J. Math. 51 (2021), 459–471. MR 4278721, 10.1216/rmj.2021.51.459
Reference: [10] Ghadermarzi, A.: On the Diophantine equations $ x^2+2^\alpha 3^\beta 19^\gamma =y^n $ and $ x^2+2^\alpha 3^\beta 13^\gamma =y^n $.Math. Slovaca 69 (2019), 507–520. MR 3954019
Reference: [11] Godinho, H., Marques, D., Togbé, A.: On the Diophantine equation $x^2+C=y^n$ for $C = 2^{a}3^{b}17^{c}$ and $C = 2^{a}13^{b}17^{c}$.Math. Slovaca 66 (2016), 565–574. MR 3543720
Reference: [12] Le, M.H., Soydan, G.: A brief survey on the generalized Lebesgue-Ramanujan-Nagell equation.Surv. Math. Appl. 15 (2020), 473–523. MR 4118124
Reference: [13] Luca, F.: On the equation $x^2+2^{a}3^{b}=y^n$.Int. J. Math. Math. Sci. 29 (2002), 239–244. MR 1897992
Reference: [14] Luca, F., Togbé, A.: On the equation $x^2+2^{a}5^{b}=y^n$.Int. J. Number Theory 4 (2008), 973–979. MR 2483306
Reference: [15] Luca, F., Togbé, A.: On the equation $x^2+2^{\alpha }13^{\beta }=y^n$.Colloq. Math. 116 (2009), 139–146. MR 2504836
Reference: [16] Pan, X.: The exponential Lebesgue-Nagell equation $x^2+p^{2m}=y^n $.Period. Math. Hung. 67 (2013), 231–242. MR 3118294, 10.1007/s10998-013-3044-7
Reference: [17] Pink, I.: On the Diophantine equation $x^2+2^{a}3^{b}5^{c}7^{d}=y^n $.Publ. Math. Debrecen 70 (2007), 149–166. MR 2288472, 10.5486/PMD.2007.3477
Reference: [18] Pink, I., Rabai, Z.: On The Diophantine equation $x^2+5^{k}17^{l}=y^n$.Commun. Math. 19 (2011), 1–9. MR 2855388
Reference: [19] Soydan, G., Tzanakis, N.: Complete solution of the Diophantine equation $x^2+5^{a}11^{b}=y^n$.Bull. Hellenic Math. Soc. 60 (2016), 125–152. MR 3622880
Reference: [20] Soydan, G., Ulas, M., Zhu, H.: On the Diophantine equation $x^2+2^{a}19^{b}=y^n$.Indian J. Pure Appl. Math. 43 (2012), 251–261. MR 2955592
Reference: [21] Tho, N.X.: Solutions to A Lebesgue-Nagell equation.Bull. Aust. Math. Soc. 105 (2022), 19–30. MR 4365058
Reference: [22] Zhu, H., Le, M., Soydan, G., Togbé, A.: On the exponential Diophantine equation $x^2+2^{a}p^{b}=y^n$.Period. Math. Hung. 70 (2015), 233–247. MR 3344003, 10.1007/s10998-014-0073-9
.

Files

Files Size Format View
ArchMathRetro_059-2023-5_4.pdf 497.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo