Previous |  Up |  Next

Article

References:
[1] С. Barnhill, P. Fletcher: Topological spaces with a unique compatible quasi-uniform structure. Archiv der Mathematik 21 (1970), 206-209. DOI 10.1007/BF01220904 | MR 0271903 | Zbl 0198.27701
[2] С. Chevally, О. Frink: Bicompactness of Cartesian products. Bull. Amer. Math. Soc. 47 (1941), 612-614. DOI 10.1090/S0002-9904-1941-07522-1 | MR 0004760
[3] P. Fletcher: On completeness of quasi-uniform spaces. Archiv der Mathematik, to appear. MR 0305359 | Zbl 0218.54018
[4] Z. Frolík: A generalization of realcompact spaces. Czech. Math. Journ. 13 (1963), 127-137. MR 0155289
[5] Z. Frolík, C. T. Liu: An embedding characterization of almost realcompact spaces. submitted for publication.
[6] I. S. Gál: Compact topological space. Amer. Math. Monthly 68 (1961), 300-301.
[7] E. Hewitt: Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc. 64 (1948), 45-99. DOI 10.1090/S0002-9947-1948-0026239-9 | MR 0026239 | Zbl 0032.28603
[8] M. Katětov: Über $H$-abgeschlossene und bikompakte Raume. Čas. pěst. mat. 69 (1940), 36-49. MR 0001912
[9] V. S. Krishnan: A note on semi uniform spaces. J. Madras Univ., В 25 (1955), 123-124. MR 0070992 | Zbl 0065.15702
[10] С. T. Liu: The $\alpha$-closure $\alpha X$ of a topological space $X$. Proc. Amer. Math. Soc. 22 (1969), 620-624. DOI 10.1090/S0002-9939-1969-0244949-4 | MR 0244949 | Zbl 0191.21301
[11] M. G. Murdeshwar, S. A. Naimpally: Quasi-uniform topological spaces. Noordhoff (1966). MR 0211386 | Zbl 0139.40501
[12] V. Niemytzki, A. Tychonoff: Beweis des Satzes, dass ein metrisierbarer Raum dann und nur dann Kompact ist, wenn er in jeder Matric vollstandig ist. Fund. Math. 12 (1928), 118--120.
[13] J. L. Sieber, W. J. Pervin: Completeness in quasi-uniform spaces. Math. Ann. 158 (1965), 79-81. DOI 10.1007/BF01370731 | MR 0172229 | Zbl 0134.41702
[14] P. Urysohn: Über die Machtigkeit der zusammenhangen Mengen. Math. Ann. 94 (1925), 262-295. DOI 10.1007/BF01208659 | MR 1512258
Partner of
EuDML logo