[1] C. Cattaneo:
Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3 (1948) p. 3-21 and 3 (1949) p. 83-101.
MR 0032898
[2] C. Cattaneo:
Sur une forme de l'equation de la chaleur eliminant le paradoxe d'une propagation instantanée. C. R. Acad. Sci. Paris 247 (1958) p. 431 - 433.
MR 0095680
[3] R. Courant, D. Hilbert:
Methods of Mathematical Physics. V. II. Interscience, New York, 1962.
Zbl 0099.29504
[4] A. Erdélyi, al: Higher Transcendental Functions V. 2. McGraw-Hill, New York, 1953.
[5] J. Hadamard:
Lectures on Cauchy's Problem in Linear Partial Differential Equations. Dover, New York, 1952.
Zbl 0049.34805
[6] M. Kopáčková-Suchá:
On the weakly nonlinear wave equation involving a small parameter at the highest derivative. Czechoslovak Math. J. 19 (94), (1969) p. 469-491.
MR 0274971
[7] P. Vernotte:
Les paradoxes de la theorie continue de l'equation de la chaleur. С. R. Acad. Sci., Paris 246, (1958).
MR 0095679
[8] M. Zlámal:
Über das gemischte Problem für eine hyperbolische Gleichung, mit kleinem Parameter. Czechoslovak Math. J. 9 (84), (1959) p. 218-244. (Russian. German summary.)
MR 0115020
[9] M. Zlámal:
Sur l'équation des telegraphistes avec un petit paramètre. Att. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 27 (1959) p. 324- 332.
MR 0115021 |
Zbl 0108.28304
[10] M. Zlámal:
The mixed problem for hyperbolic equations with a small parameter. Czechoslovak Math. J. 10 (85), (1960) p. 83-122. (Russian. English summary.)
MR 0147779
[11] M. Zlámal:
The parabolic equations as a limiting case of hyperbolic and elliptic equations. Differential Equations and Their Applications (Proc. Conf., Prague, 1962) p. 243-247. Publ. House Czechoslovak Acad. Sci., Prague; Academic Press, New York, 1963.
MR 0177213