Previous |  Up |  Next

Article

Title: Double layer potentials and the Dirichlet problem (English)
Author: Netuka, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 24
Issue: 1
Year: 1974
Pages: 59-73
Summary lang: English
.
Category: math
.
MSC: 31B20
idZBL: Zbl 0308.31008
idMR: MR0348127
DOI: 10.21136/CMJ.1974.101217
.
Date available: 2008-06-09T14:05:17Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101217
.
Reference: [1] H. Bauer: Harmonische Räume und ihre Potentialtheorie.Springer Verlag, Berlin, 1966. Zbl 0142.38402, MR 0210916
Reference: [2] N. Boboc С. Constantinescu, A. Cornea: On the Dirichlet problem in the axiomatic theory of harmonic functions.Nagoya Math. J. 23 (1963), 73-96. MR 0162957
Reference: [3] Ju. D. Burago, V. G. Mazja: Some questions in potential theory and function theory for regions with irregular boundaries.(Russian), Zapiski nauč. sem. Leningrad otd. MIAN 3 (1967).
Reference: [4] M. Dont: Non-tangential limits of the double layer potentials.Časopis pro pěstování matematiky 97 (1972), 231-258. Zbl 0237.31012, MR 0444975
Reference: [5] H. Federer, W. H. Fleming: Normal and integral currents.Annals of Math. 72 (1960), 458-520. Zbl 0187.31301, MR 0123260, 10.2307/1970227
Reference: [6] L. L. Helms: Introduction to potential theory.Wiley-Interscience, New York, 1969. Zbl 0188.17203, MR 0261018
Reference: [7] J. Köhn, M. Sieveking: Zum Cauchyschen und Dirichletschen Problem.Math. Ann. 177 (1968), 133-142. MR 0227445, 10.1007/BF01350789
Reference: [8] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511-547. MR 0209503, 10.2307/1994580
Reference: [9] J. Král: Flows of heat and the Fourier problem.Czechoslovak Math. J. 20 (95) (1970), 556-598. MR 0271554
Reference: [10] J. Král: A note on the Robin problem in potential theory.Comment. Math. Univ. Carolinae (to appear). MR 0333219
Reference: [11] I. Netuka: Generalized Robin problem in potential theory.Czechoslovak Math. J. 22 (97) (1972), 312-324. Zbl 0241.31008, MR 0294673
Reference: [12] I. Netuka: An operator connected with the third boundary value problem in potential theory.ibid. 462-489. Zbl 0241.31009, MR 0316733
Reference: [13] I. Netuka: The third boundary value problem in potential theory.ibid. 554-580. Zbl 0383.31002, MR 0313528
Reference: [14] I. Netuka: Double layer potential representation of the solution of the Dirichlet problem.Comment. Math. Univ. Carolinae 14 (1973), 183-185. Zbl 0255.31009, MR 0316725
Reference: [15] С. de la Vallée Poussin: Propriété des fonctions harmoniques dans un domaine ouvert limité par des surfaces à courbure borné.Ann. Scuola Norm. Sup. Pisa 2 (1933), 167-197.
Reference: [16] Š. Schwabik: On an integral operator in the space of functions with bounded variation.Časopis pro pěstování matematiky 97 (1972), 297-330. Zbl 0255.47057, MR 0450906
Reference: [17] R. Sikorski: Funkcje rzeczewiste.Tom 1, PWN, Warszava, 1958.
.

Files

Files Size Format View
CzechMathJ_24-1974-1_8.pdf 1.543Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo