Previous |  Up |  Next

Article

Title: Nonlinear equations with noninvertible linear part (English)
Author: Fučík, Svatopluk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 24
Issue: 3
Year: 1974
Pages: 467-495
Summary lang: English
.
Category: math
.
MSC: 47H15
idZBL: Zbl 0315.47038
idMR: MR0348568
DOI: 10.21136/CMJ.1974.101262
.
Date available: 2008-06-09T14:08:32Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101262
.
Reference: [1] S. Bancroft J. K. Hale, D. Sweet: Alternative problems for nonlinear functional equations.J. Diff. Eq. 4, 1968, 40-56. MR 0220118, 10.1016/0022-0396(68)90047-8
Reference: [2] L. Cesari: Functional analysis and Galerkin's method.Michigan Math. J. 11, 1964, 385-414. Zbl 0192.23702, MR 0173839, 10.1307/mmj/1028999194
Reference: [3] J. Dieudonné: Foundations of Modern Analysis.Academic Press 1960. MR 0120319
Reference: [4] S. Fučík: Fredholm alternative for nonlinear operators in Banach spaces and its applications to differential and integral equations.Čas. pěst. mat. 96, 1971, 371 - 390. MR 0326502
Reference: [5] S. Fučík: Note on Fredholm alternative for nonlinear operators.Comment. Math. Univ. Carolinae 12, 1971, 213-226. MR 0288641
Reference: [6] S. Fučík: Surjectivity of operators involving linear noninvertible part and nonlinear compact perturbation.(to appear). MR 0365255
Reference: [7] S. Fučík M. Kučera, J. Nečas: Ranges of nonlinear asymptotically linear operators.(to appear). MR 0372696
Reference: [8] S. Fučík J. Nečas J. Souček, V. Souček: Spectral Analysis of Nonlinear Operators.Lecture Notes in Mathematics. Springer-Verlag, 1973. MR 0467421
Reference: [9] G. В. Gustafson, K. Schmitt: Nonzero solutions of boundary value problems for second order ordinary and delay-differential equations.J. Diff. Eq. 12, 1972, 129-147. Zbl 0227.34017, MR 0346234, 10.1016/0022-0396(72)90009-5
Reference: [10] W. S. Hall: The bifurcation of solutions in Banach spaces.Trans. Amer. Math. Soc. 161, 1971, 207-217. Zbl 0225.47005, MR 0282267, 10.1090/S0002-9947-1971-0282267-2
Reference: [11] E. A. Landesman, A. С. Lazer: Nonlinear perturbations of linear elliptic boundary value problems at resonance.J. Math. Mech. 19, 1970, 609-623. Zbl 0193.39203, MR 0267269
Reference: [12] J. Locker: An existence analysis for nonlinear equations in Hilbert space.Trans. Amer. Math. Soc. 128, 1967, 403-413. Zbl 0156.15802, MR 0215142, 10.1090/S0002-9947-1967-0215142-9
Reference: [13] J. Mawhin: Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces.Rapport no 23, juin 1972, Séminaire de Mathématique Pure, Institut de Mathématique Pure et Appliqée, Université Catholique de Louvain. Zbl 0244.47049, MR 0399975
Reference: [14] J. Mawhin: Boundary value problems for nonlinear second order vector differential equations.Rapport no 47, juin 1972, Séminaires de mathématique appliquée et mécanique, Institut de Mathématique Pure et Appliquée, Université Catholique de Louvain. MR 0399556
Reference: [15] J. Nečas: On the range of nonlinear operators with linear asymptotes which are not invertible.Comment. Math. Univ. Carolinae 14, 1973, 63 - 72. MR 0318995
Reference: [16] Z. Nehari: On a class of second order differential equations.Trans. Amer. Math. Soc. 95, 1960, 101-123. MR 0111898, 10.1090/S0002-9947-1960-0111898-8
Reference: [17] L. Nirenberg: Generalized degree and nonlinear problems, "Contributions to Nonlinear Analysis".Edited by E. H. Zarantonello, Proceedings of a Symposium Constructed by the Mathematics Research Center, the University of Wisconsin, Madison April 12--14, 1971, Academic Press 1971, pp. 1 - 9. MR 0388188
Reference: [18] K. Schmitt: A nonlinear boundary value problem.J. Diff. Eq. 7, 1970, 527-537. Zbl 0198.12301, MR 0254314, 10.1016/0022-0396(70)90099-9
Reference: [19] J. Schwartz: Nonlinear Functional Analysis.Gordon and Breach, New York, 1969. Zbl 0203.14501, MR 0433481
Reference: [20] M. Sova: Abstract semilinear equations with small nonlinearities.Comment. Math. Univ. Carolinae 12, 1971, 785-805. Zbl 0235.47034, MR 0291912
Reference: [21] M. Sova: Abstract semilinear equations with small nonlinearities.Proceedings of Equadiff III, Czechoslovak Conference on Differential Equations and their Applications, Brno 1972, J. E. Purkyně University - Brno 1973, pp. 71 - 79. MR 0370291
Reference: [22] S. A. Williams: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem.J. Diff. Eq. 8, 1970, 580-586. Zbl 0209.13003, MR 0267267
Reference: [23] K. Yosida: Functional Analysis.Springer Verlag, 1965. Zbl 0126.11504
.

Files

Files Size Format View
CzechMathJ_24-1974-3_17.pdf 2.717Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo