Previous |  Up |  Next

Article

Title: The existence of 2-factors in squares of graphs (English)
Author: Alavi, Yousef
Author: Chartrand, Gary
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 25
Issue: 1
Year: 1975
Pages: 79-83
Summary lang: English
.
Category: math
.
MSC: 05C99
idZBL: Zbl 0312.05124
idMR: MR0369165
DOI: 10.21136/CMJ.1975.101296
.
Date available: 2008-06-09T14:10:54Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101296
.
Reference: [1] M. Behzad, G. Chartrand: Introduction to the Theory of Graphs.Allyn and Bacon, Boston (1972). MR 0432461
Reference: [2] G. Chartrand A. M. Hobbs H. A. Jung S. F. Kapoor, and C. St. J. A. Nash-Williams: The square of a block is Hamiltonian connected.J. Combinatorial Theory 16 (1974), 290-292. MR 0345865, 10.1016/0095-8956(74)90075-6
Reference: [3] H. Fleischner: The square of every two-connected graph is Hamiltonian.J. Combinatorial Theory (Series B) 16 (1974), 29-34. Zbl 0256.05121, MR 0332573, 10.1016/0095-8956(74)90091-4
Reference: [4] A. M. Hobbs: Some hamiltonian results in powers of graphs.J. Res. Nat. Bur. Standards 77B (1973), 1-10. Zbl 0262.05124, MR 0337688
Reference: [5] F. Neuman: On a certain ordering of the vertices of a tree.Časopis Pěst. Mat. 89 (1964), 323-339. Zbl 0131.20901, MR 0181587
.

Files

Files Size Format View
CzechMathJ_25-1975-1_12.pdf 734.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo