Previous |  Up |  Next

Article

Title: Adjoint domains and generalized splines (English)
Author: Brown, Richard C.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 25
Issue: 1
Year: 1975
Pages: 134-147
Summary lang: English
.
Category: math
.
MSC: 34B05
MSC: 41A15
MSC: 49A10
idZBL: Zbl 0309.41014
idMR: MR0397243
DOI: 10.21136/CMJ.1975.101299
.
Date available: 2008-06-09T14:11:08Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101299
.
Reference: [1] J. H. Ahlberg, E. N. Nilson: The approximation of linear functional.SIAM J. Numer. AnaL 3 (1966), 173-182. MR 0217500, 10.1137/0703013
Reference: [2] P. M. Anselone, P. J. Laurent: A general method for the construction of interpolating or smoothing spline-functions.Numer. Math. 12 (1968), 66-82. Zbl 0197.13501, MR 0249904, 10.1007/BF02170998
Reference: [3] R. Arens: Operational calculus of linear relations.Pacific J. Math. 11 (1961), 9-23. Zbl 0102.10201, MR 0123188, 10.2140/pjm.1961.11.9
Reference: [4] M. Attela: Généralisation de la définition et des propriétés des „spline fonction".C. R. Acad. Sci., Paris, Sér. A 260 (1965), 3550-3553. MR 0212469
Reference: [5] M. Attela: Spline-fonctions généralisées.С R. Acad. Sci., Paris, Sér. A 261 (1965), 2149-2152. MR 0212470
Reference: [6] R. C. Brown: The adjoint and Fredholm index of a linear system with general boundary conditions.Technical Summary Report #1287, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1972.
Reference: [7] R. C. Brown: Duality theory for $n^th$ order differential operators under Stieltjes boundary conditions.Technical Summary Report #1329, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1973.
Reference: [8] C. de Boor: Best approximation properties of spline functions of odd degree.J. Math. Mech. 12 (1963), 747-749, Zbl 0116.27601, MR 0154022
Reference: [9] C. de Boor, R. E. Lynch: On splines and their minimum properties.J. Math. Mech. 15 (1966), 953-970. Zbl 0185.20501, MR 0203306
Reference: [10] S. Goldberg: Unbounded Linear Operators.McGraw-Hill, New York, 1966. Zbl 0148.12501, MR 0200692
Reference: [11] M. Golomb, H. F. Weinberger: Optimal approximation and error bounds. On Numerical Approximation.R. E. Langer, Editor, University of Wisconsin Press, Madison, 1959, pp. 117-190. MR 0121970
Reference: [12] T. N. E. Greville: Interpolation by generalized spline functions.Technical Summary Report #784, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1964.
Reference: [13] T. N. E. Greville: Data fitting by spline functions.Technical Summary Report #893, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1968.
Reference: [14] J. W. Jerome: Linear self-adjoint multipoint boundary value problems and related approximation schemes.Numer. Math. 15 (1970), 433 - 449. Zbl 0214.41801, MR 0287068, 10.1007/BF02165513
Reference: [15] J. W. Jerome, L. L. Schumaker: On Lg-splines.J. Approximation Theory 2 (1969), 29-49. Zbl 0172.34501, MR 0241864, 10.1016/0021-9045(69)90029-X
Reference: [16] J. W. Jerome, R. S. Varga: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems.Theory and Applications of Spline Functions, T. N. E. Greville, Editor, Academic Press, New York, 1969, pp. 103-155. Zbl 0188.13004, MR 0239328
Reference: [17] A. M. Krall: Differential operators and their adjoints under integral and multiple point boundary conditions.J. Differential Equations 4 (1968), 327-336. Zbl 0165.42702, MR 0230968, 10.1016/0022-0396(68)90019-3
Reference: [18] A. M. Krall: Boundary value problems with interior point boundary conditions.Pacific J. Math. 29 (1969), 161-166. Zbl 0189.45401, MR 0245894, 10.2140/pjm.1969.29.161
Reference: [19] T. R. Lucas: A generalization of L-splines.Numer. Math. 15 (1970), 359-370. Zbl 0214.41303, MR 0269080, 10.1007/BF02165507
Reference: [20] T. R. Lucas: M-splines.J. Approximation Theory 5 (1972), 1-14. Zbl 0227.41002, MR 0350265, 10.1016/0021-9045(72)90026-3
Reference: [21] M. A. Naimark: Linear Differential Operators.Part II. Ungar, New York, 1968. Zbl 0227.34020
Reference: [22] A. Sard: Optimal approximation.J. Functional Analysis 1 (1967), 222-244. Zbl 0158.13601, MR 0219967, 10.1016/0022-1236(67)90033-X
Reference: [23] I. J. Schoenberg: On interpolation by spline functions and its minimal properties.On Approximation Theory, (Proceedings of the Conference held in the Mathematical Research Institute at Oberwolfach, Black Forest, Aug. 4-10, 1963), P. L. Butzei, ed., Birkhäuser Verlag, Basel, 1964, pp. 109-129. MR 0180785
Reference: [24] I. J. Schoenberg: On trigonometric spline interpolation.J. Math. Mech. 13 (1964), 795-825. Zbl 0147.32104, MR 0165300
Reference: [25] I. J. Schoenberg: On the Ahlberg-Nilson extension of spline interpolation: the g-splines and their optimal properties.J. Math. Anal. Appl. 21 (1968), 207-231. MR 0223802, 10.1016/0022-247X(68)90252-7
Reference: [26] M. H. Schultz, R. S. Varga: X-splines.Numer. Math. 10 (1967), 345-369. MR 0225068, 10.1007/BF02162033
Reference: [27] F. W. Stallard: Differential systems with interface conditions.Oak Ridge National Laboratory Report, ORNL 1876 (1955).
Reference: [28] J. L. Wash J. H. Ahlberg, E. N. Nilson: Best approximation properties of the spline fit.J. Math. Mech. 11 (1962), 225-234. MR 0137283
Reference: [29] A. Zettl: Adjoint and self-adjoint boundary value problems with interface conditions.Technical Summary Report # 827, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1967. MR 0234049
.

Files

Files Size Format View
CzechMathJ_25-1975-1_15.pdf 1.536Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo