Title:
|
Adjoint domains and generalized splines (English) |
Author:
|
Brown, Richard C. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
25 |
Issue:
|
1 |
Year:
|
1975 |
Pages:
|
134-147 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
MSC:
|
34B05 |
MSC:
|
41A15 |
MSC:
|
49A10 |
idZBL:
|
Zbl 0309.41014 |
idMR:
|
MR0397243 |
DOI:
|
10.21136/CMJ.1975.101299 |
. |
Date available:
|
2008-06-09T14:11:08Z |
Last updated:
|
2020-07-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/101299 |
. |
Reference:
|
[1] J. H. Ahlberg, E. N. Nilson: The approximation of linear functional.SIAM J. Numer. AnaL 3 (1966), 173-182. MR 0217500, 10.1137/0703013 |
Reference:
|
[2] P. M. Anselone, P. J. Laurent: A general method for the construction of interpolating or smoothing spline-functions.Numer. Math. 12 (1968), 66-82. Zbl 0197.13501, MR 0249904, 10.1007/BF02170998 |
Reference:
|
[3] R. Arens: Operational calculus of linear relations.Pacific J. Math. 11 (1961), 9-23. Zbl 0102.10201, MR 0123188, 10.2140/pjm.1961.11.9 |
Reference:
|
[4] M. Attela: Généralisation de la définition et des propriétés des „spline fonction".C. R. Acad. Sci., Paris, Sér. A 260 (1965), 3550-3553. MR 0212469 |
Reference:
|
[5] M. Attela: Spline-fonctions généralisées.С R. Acad. Sci., Paris, Sér. A 261 (1965), 2149-2152. MR 0212470 |
Reference:
|
[6] R. C. Brown: The adjoint and Fredholm index of a linear system with general boundary conditions.Technical Summary Report #1287, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1972. |
Reference:
|
[7] R. C. Brown: Duality theory for $n^th$ order differential operators under Stieltjes boundary conditions.Technical Summary Report #1329, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1973. |
Reference:
|
[8] C. de Boor: Best approximation properties of spline functions of odd degree.J. Math. Mech. 12 (1963), 747-749, Zbl 0116.27601, MR 0154022 |
Reference:
|
[9] C. de Boor, R. E. Lynch: On splines and their minimum properties.J. Math. Mech. 15 (1966), 953-970. Zbl 0185.20501, MR 0203306 |
Reference:
|
[10] S. Goldberg: Unbounded Linear Operators.McGraw-Hill, New York, 1966. Zbl 0148.12501, MR 0200692 |
Reference:
|
[11] M. Golomb, H. F. Weinberger: Optimal approximation and error bounds. On Numerical Approximation.R. E. Langer, Editor, University of Wisconsin Press, Madison, 1959, pp. 117-190. MR 0121970 |
Reference:
|
[12] T. N. E. Greville: Interpolation by generalized spline functions.Technical Summary Report #784, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1964. |
Reference:
|
[13] T. N. E. Greville: Data fitting by spline functions.Technical Summary Report #893, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1968. |
Reference:
|
[14] J. W. Jerome: Linear self-adjoint multipoint boundary value problems and related approximation schemes.Numer. Math. 15 (1970), 433 - 449. Zbl 0214.41801, MR 0287068, 10.1007/BF02165513 |
Reference:
|
[15] J. W. Jerome, L. L. Schumaker: On Lg-splines.J. Approximation Theory 2 (1969), 29-49. Zbl 0172.34501, MR 0241864, 10.1016/0021-9045(69)90029-X |
Reference:
|
[16] J. W. Jerome, R. S. Varga: Generalizations of spline functions and applications to nonlinear boundary value and eigenvalue problems.Theory and Applications of Spline Functions, T. N. E. Greville, Editor, Academic Press, New York, 1969, pp. 103-155. Zbl 0188.13004, MR 0239328 |
Reference:
|
[17] A. M. Krall: Differential operators and their adjoints under integral and multiple point boundary conditions.J. Differential Equations 4 (1968), 327-336. Zbl 0165.42702, MR 0230968, 10.1016/0022-0396(68)90019-3 |
Reference:
|
[18] A. M. Krall: Boundary value problems with interior point boundary conditions.Pacific J. Math. 29 (1969), 161-166. Zbl 0189.45401, MR 0245894, 10.2140/pjm.1969.29.161 |
Reference:
|
[19] T. R. Lucas: A generalization of L-splines.Numer. Math. 15 (1970), 359-370. Zbl 0214.41303, MR 0269080, 10.1007/BF02165507 |
Reference:
|
[20] T. R. Lucas: M-splines.J. Approximation Theory 5 (1972), 1-14. Zbl 0227.41002, MR 0350265, 10.1016/0021-9045(72)90026-3 |
Reference:
|
[21] M. A. Naimark: Linear Differential Operators.Part II. Ungar, New York, 1968. Zbl 0227.34020 |
Reference:
|
[22] A. Sard: Optimal approximation.J. Functional Analysis 1 (1967), 222-244. Zbl 0158.13601, MR 0219967, 10.1016/0022-1236(67)90033-X |
Reference:
|
[23] I. J. Schoenberg: On interpolation by spline functions and its minimal properties.On Approximation Theory, (Proceedings of the Conference held in the Mathematical Research Institute at Oberwolfach, Black Forest, Aug. 4-10, 1963), P. L. Butzei, ed., Birkhäuser Verlag, Basel, 1964, pp. 109-129. MR 0180785 |
Reference:
|
[24] I. J. Schoenberg: On trigonometric spline interpolation.J. Math. Mech. 13 (1964), 795-825. Zbl 0147.32104, MR 0165300 |
Reference:
|
[25] I. J. Schoenberg: On the Ahlberg-Nilson extension of spline interpolation: the g-splines and their optimal properties.J. Math. Anal. Appl. 21 (1968), 207-231. MR 0223802, 10.1016/0022-247X(68)90252-7 |
Reference:
|
[26] M. H. Schultz, R. S. Varga: X-splines.Numer. Math. 10 (1967), 345-369. MR 0225068, 10.1007/BF02162033 |
Reference:
|
[27] F. W. Stallard: Differential systems with interface conditions.Oak Ridge National Laboratory Report, ORNL 1876 (1955). |
Reference:
|
[28] J. L. Wash J. H. Ahlberg, E. N. Nilson: Best approximation properties of the spline fit.J. Math. Mech. 11 (1962), 225-234. MR 0137283 |
Reference:
|
[29] A. Zettl: Adjoint and self-adjoint boundary value problems with interface conditions.Technical Summary Report # 827, Mathematics Research Center, University of Wisconsin, Madison, Wisconsin, 1967. MR 0234049 |
. |