Previous |  Up |  Next

Article

Title: Remarks on inertia theorems for matrices (English)
Author: Wimmer, Harald K.
Author: Ziebur, Allen D.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 25
Issue: 4
Year: 1975
Pages: 556-561
Summary lang: English
.
Category: math
.
MSC: 65F15
idZBL: Zbl 0344.15008
idMR: MR0398083
DOI: 10.21136/CMJ.1975.101351
.
Date available: 2008-06-09T14:14:53Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101351
.
Reference: [1] D. Carlson, H. Schneider: Inertia theorems for matrices: The semidefinite case.J. Math. Anal. Appl. 6 (1963), 430-446. Zbl 0192.13402, MR 0148678, 10.1016/0022-247X(63)90023-4
Reference: [2] Ch.-T. Chen: A generalisation of the inertia theorem.SIAM J. Appl. Math. 25 (1973), 158-161. MR 0335534, 10.1137/0125020
Reference: [3] R. D. Hill: Inertia theory for simultaneously triangulable complex matrices.Linear Algebra Appl. 2 (1969), 131-142. Zbl 0186.33901, MR 0245596, 10.1016/0024-3795(69)90022-6
Reference: [4] A. Ostrowski, H. Schneider: Some theorems on the inertia of general matrices.J. Math. Anal. Appl. 4 (1962), 72-84. Zbl 0112.01401, MR 0142555, 10.1016/0022-247X(62)90030-6
Reference: [5] R. A. Smith: Bounds for quadratic Lyapunov functions.J. Math. Anal. Appl. 12 (1965), 425-435. Zbl 0135.29802, MR 0190475, 10.1016/0022-247X(65)90010-7
Reference: [6] R. A. Smith: Matrix calculations for Lyapunov quadratic forms.J. Diff. Equations 2 (1966), 208-217. MR 0188557, 10.1016/0022-0396(66)90044-1
Reference: [7J O. Taussky: A generalization of a theorem by Lyapunov.J. Soc. Ind. Appl. Math. 9 (1961), 640-643. MR 0133336
Reference: [8] O. Taussky: Matrices $C$ with $C\sp{n}\rightarrow 0$., J. Algebra / (1964), 5-10. MR 0161865, 10.1016/0024-3795(74)90060-3
Reference: [9] H. K. Wimmer: Inertia theorems for matrices, controllability and linear vibrations.Linear Algebra Appl. 8 (1974), 337-343. Zbl 0288.15015, MR 0394388, 10.1016/0024-3795(74)90024-X
Reference: [10] H. K. Wimmer: An inertia theorem for tridiagonal matrices and a criterion of Wall on continued fractions.Linear Algebra Appl. 9 (1974), 41 - 44. Zbl 0294.15009, MR 0360632, 10.1137/1012005
Reference: [11] A. D. Ziebur: On determining the structure of A by analysing $e^At$.SIAM Review 12 (1970), 98-102. MR 0254074
.

Files

Files Size Format View
CzechMathJ_25-1975-4_6.pdf 612.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo