Previous |  Up |  Next


Title: On the limit-3 classification of the square of a second-order, linear differential expression (English)
Author: Everitt, William Norrie
Author: Giertz, Magnus
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 26
Issue: 4
Year: 1976
Pages: 653-665
Category: math
MSC: 34B25
idZBL: Zbl 0363.34016
idMR: MR0430398
DOI: 10.21136/CMJ.1976.101437
Date available: 2008-06-09T14:21:10Z
Last updated: 2020-07-28
Stable URL:
Reference: [1] Choudhuri Jyoti, Everitt W. N.: On the square of a formally self-adjoint differential expression.J. Lond. Math. Soc. (2) 1 (1969) 661 - 673. MR 0248562, 10.1112/jlms/s2-1.1.661
Reference: [2] Dunford N., Schwartz J. T.: Linear operators; Part II.(Interscience, New York 1955).
Reference: [3] Everitt W. N., Giertz M.: On some properties of the powers of a formally self-adjoint differential expression.Proc. Lond. Math. Soc. (3) 24 (1972) 149-170. Zbl 0243.34046, MR 0289841, 10.1112/plms/s3-24.1.149
Reference: [4] Everitt W. N., Giertz M.: On the integrable-square classification of ordinary symmetric differential expressions.J. Lond. Math. Soc. (2) 10 (1975) 417-426. Zbl 0317.34013, MR 0377170, 10.1112/jlms/s2-10.4.417
Reference: [5] Everitt W. N., Giertz M.: On the deficiency indices of powers of formally symmetric differential expressions.Spectral Theory and Differential Equations, Lecture Notes in Mathematics 448, Springer-Verlag, Berlin 1975. Zbl 0315.34010, MR 0450661
Reference: [6] Kauffman R. M.: Polynomials and the limit point condition.Trans. Amer. Math. Soc. 201 (1975) 347-366. Zbl 0274.34019, MR 0358438, 10.1090/S0002-9947-1975-0358438-7
Reference: [7] Kumar Krishna V.: The limit-2 case of the square of a second-order differential expression.J. London Math. Soc. 8 (1974) 134-138. MR 0338497
Reference: [8] Naimark M. A.: Linear differential operators: Part II.(Ungar, New York, 1968). Zbl 0227.34020, MR 0353061
Reference: [9] Read T. T.: On the limit point condition for polynomials in a second order differential expression.Chalmers University of Göteborg and the University of Göteborg, Department of Mathematics No. 13 - 1974. MR 0372310
Reference: [10] Zettl A.: The limit point and limit circle cases for polynomials in a differential operator.Proc. Royal Soc. Edinburgh 73A (1974/75) 301-306. MR 0379968


Files Size Format View
CzechMathJ_26-1976-4_14.pdf 1.515Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo