Full entry |
PDF
(4.2 MB)
Feedback

Related articles:

References:

[1] N. Bourbaki: **Elements de Mathematique, Livre III, Topologie Generale**. Paris, Herman, 1951.

[3] E. Čech: **Topological Spaces**. Prague, 1966. MR 0211373

[4] J. Dauns K. H. Hofmann: **Representation of Rings by Sections**. Mem. Amer. Math. Soc., 83, (1968). MR 0247487

[5] Z. Frolík: **Structure Projective and Structure Inductive Presheaves**. Celebrazioni arrchimedee del secolo XX, Simposio di topologia, 1964.

[7] A. N. Gelfand D. A. Rajkov G. E. Silov: **Commutative Normed Rings**. Moscow, 1960 (Russian).

[8] E. Hille S. Phillipps: **Functional Analysis and Semi-Groups**. Providence, 1957.

[10] G. Koethe: **Topological Vector Spaces, I**. New York Inc, Springer Vlg., 1969. Zbl 0179.17001

[11] J. Pechanec-Drahoš: **Representation of Presheaves of Semiuniformisable Spaces, and Representation of a Presheaf by the Presheaf of all Continuous Sections in its Covering Space**. Czech. Math. Journal, 21 (96), (1971). MR 0487958

[12] J. Pechanec-Drahoš: **Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part One, Separation Theorems for Inductive Limits of Closured Presheaves**. Czech. Math. Journal.

[13] J. Pechanec-Drahoš: **Functional Separation of Inductive Limits and Representation of Presheaves by Sections, Part Two, Embedding of Presheaves into Presheaves of Compact Spaces**. Czech. Math. Journal 29 (104), (1949).

[14] J. Pechanec-Drahoš: **Functional Separation of Inductive Limits And Representation of Presheaves by Sections, Part Three, Some Special Cases of Separation of Inductive Limits of Presheaves**. Czech. Math. Journal 30 (105), (1980).