Previous |  Up |  Next

Article

Title: Differentiability of the distance function and points of multi-valuedness of the metric projection in Banach space (English)
Author: Zajíček, Luděk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 2
Year: 1983
Pages: 292-308
.
Category: math
.
MSC: 41A50
MSC: 46B20
idZBL: Zbl 0527.41028
idMR: MR699027
DOI: 10.21136/CMJ.1983.101878
.
Date available: 2008-06-09T14:54:26Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101878
.
Reference: [1] T. Abatzoglou: Finite-dimensional Banach spaces with a.e. differentiable metric projection.Proc. Amer. Math. Soc. 78 (1980), 492-496. Zbl 0475.41035, MR 0556619, 10.1090/S0002-9939-1980-0556619-8
Reference: [2] A. D. Aleksandrov: Existence almost everywhere of the second differential of a convex function and some properties of convex surfaces connected with it.(Russian), Učenye Zapiski Leningrad. Gos. Univ. Math. Ser. 6 (1939), 3 - 35.
Reference: [3] N. Aronszajn: Differentiability of Lipschitzian mappings between Banach spaces.Studia Math. 57 (1976), 147-190. Zbl 0342.46034, MR 0425608, 10.4064/sm-57-2-147-190
Reference: [4] E. Asplund: Differentiability of the metric projection in finite-dimensional Euclidean spaces.Proc. Amer. Math. Soc. 38 (1973), 218-219. MR 0310150
Reference: [5] H. Blumberg: Exceptional sets.Fund. Math. 32 (1939), 3 - 32. Zbl 0021.11206, 10.4064/fm-32-1-3-32
Reference: [6] G. Bouligand: Sur la distance d'un point variable a un ensemble fixe.C. R. Acad. Sci. Paris 206 (1938), 552-554. Zbl 0018.17301
Reference: [7] E. P. Dolženko: Boundary properties of arbitrary functions.(Russian), Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967), 3-14. MR 0217297
Reference: [8] P. Erdös: On the Hausdorff dimension of some sets in Euclidean space.Bull. Amer. Math. Soc. 52 (1946), 107-109. MR 0015144, 10.1090/S0002-9904-1946-08514-6
Reference: [9] S. Fitzpatrick: Metric projection and the differentiability of distance functions.Bull. Austral. Math. Soc. 22 (1980), 291-312. MR 0598702, 10.1017/S0004972700006596
Reference: [10] S. Golab: Sur la fonction representant la distance d'un point variable a un ensemble fixe.С. R. Acad. Sci. Paris 206 (1938), 406-408. Zbl 0018.17205
Reference: [11] P. Hartman: On Functions representable as a Difference of Convex Functions.Pacific J. Math. 9 (1959), 707-713. Zbl 0093.06401, MR 0110773, 10.2140/pjm.1959.9.707
Reference: [12] S. V. Konjagin: Approximation properties of arbitrary sets in Banach spaces.Dokl. Akad. Nauk SSSR 239 (1978), No. 2, 261-264, Soviet. Math. Dokl. 19 (1978), No. 2, 309-312. MR 0493113
Reference: [13] S. V. Konjagin: On approximation properties of closed sets in Banach spaces and the characterization of strongly convex spaces.(Russian), Dokl. Akad. Nauk SSSR 251 (1980), No. 2, 276-280, Soviet. Math. Dokl. 21 (1980), No. 2, 418-422. MR 0565493
Reference: [14] E. J. Mc Shane: Extension of range of functions.Bull. Amer. Math. Soc. 40 (1934), 837-842. MR 1562984, 10.1090/S0002-9904-1934-05978-0
Reference: [15] F. Mignot: Controle dans les inéqualitions variationelles elliptiques.J. Functional Analysis 22 (1976), 130-185. MR 0423155, 10.1016/0022-1236(76)90017-3
Reference: [16] M. R. de Mises: La base géométrique du théoreme de M. Mandelbrojt sur les points singuliers d'une fonction analytique.C. R. Acad. Sci. Paris 205 (1937), 1353 - 1355. Zbl 0017.42601
Reference: [17] R. R. Phelps: Gaussian null sets and differentiability of Lipschitz maps on Banach spaces.Pacific J. Math. 18 (1978), 523-531. MR 0510938, 10.2140/pjm.1978.77.523
Reference: [18] Ju. G. Resetnjak: On a generalization of convex surfaces.(Russian), Mat. Sbornik 40 (82) (1956), 381-398. MR 0083757
Reference: [19] A. W. Roberts, D. E. Varberg: Convex functions.New York, 1973. Zbl 0271.26009, MR 0442824
Reference: [20] S. Saks: Theory of the Integral.New York, 1937. Zbl 0017.30004
Reference: [21] W. H. Young: La symétrie de structure des fonctions de variables réeles.Bull. Sci. Math. 52 (1928), 265-280.
Reference: [22] L. Zajíček: On cluster sets of arbitrary functions.Fund. Math, 83 (1974), 197-217. MR 0338294, 10.4064/fm-83-3-197-217
Reference: [23] L. Zajíček: Sets of $\sigma$-porosity and sets of $\sigma$-porosity.(q). Čas. pěst. mat. 101 (1976), 350-359. MR 0457731
Reference: [24] L. Zajíček: On the points of multiplicity of monotone operators.Comment. Math. Univ. Carolinae 19 (1978), 179-189. MR 0493541
Reference: [25] L. Zajíček: On the points of multivaluedness of metric projections in separable Banach spaces.Comment. Math. Univ. Carolinae 19 (1978), 513 - 523. MR 0508958
Reference: [26] L. Zajíček: On the differentiation of convex functions in finite and infinite dimensional spaces.Czechoslovak Math. J. 29 (104) (1979), 340-348. MR 0536060
Reference: [27] L. Zajíček: On metric projections and distance functions in Banach spaces.Abstracta of Eighth winter school on abstract analysis (1980), 207-208, Prague 1980.
.

Files

Files Size Format View
CzechMathJ_33-1983-2_9.pdf 2.005Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo