Previous |  Up |  Next

Article

Title: Semi-automorphisms of transformation semigroups (English)
Author: Sullivan, Robert P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 33
Issue: 4
Year: 1983
Pages: 548-554
.
Category: math
.
MSC: 20M15
MSC: 20M20
idZBL: Zbl 0537.20037
idMR: MR721086
DOI: 10.21136/CMJ.1983.101912
.
Date available: 2008-06-09T14:56:57Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/101912
.
Reference: [1] G. Ancochea: On semi-automorphisms of division algebras.Ann. of Math., 48 (1947) 147-153. Zbl 0029.10703, MR 0018642, 10.2307/1969221
Reference: [2] L. Childs: A Concrete Introduction to Higher Algebra.Springer-Verlag, 1979. Zbl 0397.00002, MR 0520728
Reference: [3] A. H. Clifford, G. B. Preston: The Algebraic Theory of Semigroups.Math. Surveys, No. 7, Amer. Math. Soc., Providence, RI, Volume I (1961), Volume 2 (1967). Zbl 0111.03403
Reference: [4] J. Dieudonné: On the automorphisms of the classical groups.Mem. Amer. Math. Soc., No. 2, 1951. MR 0045125
Reference: [5] F. Dinkines: Semi-automorphisms of symmetric and alternating groups.Proc. Amer. Math. Soc., 2 (1951) 478-486. MR 0041140, 10.1090/S0002-9939-1951-0041140-8
Reference: [6] A. E. Evseev, N. E. Podran: Semigroups of transformations generated by idempotents with given projection characteristics.Izv. Vyss. Ucebn. Zaved. Mat., 12 (103) 1970, 30-36. MR 0283106
Reference: [7] I. N. Herstein, M. F. Ruchte: Semi-automorphisms of groups.Proc. Amer. Math. Soc., 9 (1958) 145-150. MR 0094395, 10.1090/S0002-9939-1958-0094395-4
Reference: [8] J. M. Howie: The subsemigroup generated by the idempotents of a full transformation semigroup.J. London Math. Soc., 41 (1966) 707-716. Zbl 0146.02903, MR 0219649
Reference: [9] Loo-Keng Hua: On the automorphisms of a sfield.Proc Nat. Acad. Sci. U.S.A., 35 (1949) 386-389. MR 0029886, 10.1073/pnas.35.7.386
Reference: [10] N. Jacobson: Isomorphisms of Jordan rings.Amer. J. Math., 70 (1948) 317-326. Zbl 0039.02801, MR 0024893, 10.2307/2372329
Reference: [11] N. Jacobson, С. E. Rickart: Jordan homomorphisms of rings.Trans. Amer. Math. Soc., 69 (1950) 479-502. Zbl 0039.26402, MR 0038335, 10.1090/S0002-9947-1950-0038335-X
Reference: [12] N. Jacobson: Basic Algebra.I, W. H. Freeman and Co., 1974. Zbl 0284.16001, MR 0356989
Reference: [13] I. Kaplansky: Semi-automorphisms of rings.Duke Math. J., 14 (1947) 521-525. Zbl 0029.24801, MR 0022209, 10.1215/S0012-7094-47-01443-9
Reference: [14] K. D. Magill: Semigroup structures for families of functions.I, J. Austral. Math. Soc., 7 (1967) 81-94. Zbl 0163.17104, MR 0207875, 10.1017/S1446788700005115
Reference: [15] W. R. Scott: Half-homomorphisms of groups.Proc Amer. Math. Soc., 8 (1957) 1141- 1144. MR 0095890, 10.1090/S0002-9939-1957-0095890-3
Reference: [16] W. R. Scott: Group Theory.Prentice-Hall, 1964. Zbl 0126.04504, MR 0167513
Reference: [17] W. R. Scott: Semi-isomorphisms of certain infinite permutation groups.Proc. Amer. Math. Soc., 21 (1969) 711-713. Zbl 0175.29902, MR 0241519, 10.1090/S0002-9939-1969-0241519-9
Reference: [18] L. N. Sevrin: Semi-isomorphisms and lattice isomorphisms of semigroups with a cancellation law.Dokl. Akad. Nauk SSSR, 171 (1966) 296-298; translated as Sov. Math. Dokl., 7 (1966) 1491-1493. MR 0210803
Reference: [19] L. N. Sevrin: Semi-isomorphisms of semigroups with cancellation law.Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967) 957-964. MR 0238976
Reference: [20] R. P. Sullivan: Automorphisms of transformation semigroups.J. Austral. Math. Soc., 20 (Series A) 1975, 77-84. Zbl 0318.20042, MR 0372095, 10.1017/S144678870002396X
Reference: [21] R. P. Sullivan: Automorphisms of injective transformation semigroups.(to appear). Zbl 0507.20037, MR 0681416
Reference: [22] J. S. V. Symons: Automorphisms of transformation semigroups.Ph. D. Thesis, University of Western Australia, 1973.
Reference: [23] M. Weinstein: Examples of Groups.Polygonal Pub. House, 1977. Zbl 0359.20001, MR 0453847
.

Files

Files Size Format View
CzechMathJ_33-1983-4_13.pdf 1.060Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo