Previous |  Up |  Next

Article

References:
[1] D. E. Blair P. Verheyen, L. Verstraelen: Hypersurfaces satisfaisant à $R. C= 0$ ou $С . R=0$. to appear.
[2] E. Cartan: La déformation des hypersurfaces dans l'espace conformément réel à $n \neq 5$ dimensions. Bull. Soc. Math. France, 45 (1917), p. 57-121. MR 1504762
[3] В. Y. Chen, L. Verstraelen: A characterization of totally quasiumbilical submanifolds and its applications. Boll. Un. Mat. Ital. (5) 14-A (1977), 49-57. MR 0478040 | Zbl 0365.53007
[4] J. Deprez P. Verheyen, L. Verstraelen: Intrinsic characterizations for complex hypercylinders and complex hyperspheres. Geom. Dedicata 16 (1984), 217-229. MR 0758908
[5] G. L. Lancaster: Canonical metrics for certain conformally Euclidean spaces of dimension three and codimension one. Duke Math. J. 40 (1973), 1 - 8. DOI 10.1215/S0012-7094-73-04001-5 | MR 0320927 | Zbl 0256.53024
[6] y. Matsuyarna: Complete hypersurfaces with $RS = 0$ in $E\sp{n+2}$. Proc. Amer. Math. Soc. 88 (1983), 119-123. MR 0691290
[7] I. Mogi, H. Nakagawa: On hypersurfaces with parallel Ricci tensor in a Riemannian manifold of constant curvature. in Differential Geometry, in honor of K. Yano, Kinokuniya, 1972,267-279. MR 0326624 | Zbl 0253.53018
[8] K. Nomizu: On hypersurfaces satisfying a certain condition on the curvature tensor. Tôhoku Math. J. 20(1968), 46-59. DOI 10.2748/tmj/1178243217 | MR 0226549 | Zbl 0174.53301
[9] P. J. Ryan: Homogenity and some curvature conditions for hypersurfaces. Tôhoku Math. J. 21 (1969), 363-388. DOI 10.2748/tmj/1178242949 | MR 0253243
[10] P. J. Ryan: Hypersurfaces with parallel Ricci tensor. Osaka J. Math. 8 (1971), 251 - 259. MR 0296859 | Zbl 0222.53025
[11] P. J. Ryan: A class of complex hypersurfaces. Colloq. Math. 26 (1972), 175-182. MR 0365437 | Zbl 0243.53028
[12] Z. I. Szabó: Structure theorems on Riemannian spaces satisfying $R(X, Y). R= 0$. I. The local version. J. Differential Geometry 17(1982) 531-582. MR 0683165 | Zbl 0508.53025
[13] S. Tanno: Hypersurfaces satisfying a certain condition on the Ricci tensor. Tôhoku Math. J.21 (1969), 297-303. MR 0261508 | Zbl 0189.22403
[14] S. Tanno, T. Takahashi: Some hypersurfaces of a sphere. Tôhoku Math. J. 22 (1970), 212-219. DOI 10.2748/tmj/1178242815 | MR 0268822 | Zbl 0199.56502
[15] T. Takahashi: Hypersurface with parallel Ricci tensor in a space of constant holomorphic sectional curvature. J. Math. Soc. Japan 19 (1967), 199-204. DOI 10.2969/jmsj/01920199 | MR 0211371 | Zbl 0147.40603
[16] P. Verheyen, L. Verstraelen: A new intrinsic characterization of hyper cylinders in Euclidean spaces. to appear.
Partner of
EuDML logo