[1] F. L. Bauer E. Deutsch J. Stoer: 
Abschätzungen für die Eigenwerte positiver linearen Operatoren. Linear Algebra and Applications, 2 (1969), 275-331. 
MR 0245587[2] G Birkhoff: 
Lattice Theory. 3rd ed.. Amer. Math. Soc. Colloq. Publ. Vol. XXV, Providence, R. I.(1967). 
MR 0227053 | 
Zbl 0153.02501[3] K. L. Chung: 
Markov chains with stationary transition probabilities. Springer-Verlag, Berlin-Göttingen-Heidelberg (1960). 
MR 0116388 | 
Zbl 0092.34304[4] R. L. Dobrushin: 
Central limit theorem for non-stationary Markov chains I, II. Theory Prob. Apl. 1 (1956), 63-80, 329-383 (EngHsh translation). 
MR 0086436 | 
Zbl 0093.15001[6] S. Karlin: 
A first course in stochastic processes. Academic Press, New York and London (1968). 
MR 0208657 | 
Zbl 0177.21102[7] J. G. Kemeny J. L. Snell: 
Finite Markov chains. D. van Nostrand Соrр., New York (1960). 
MR 0115196[8] D. G. Kendall: 
Unitary dilatations of Markov transition operators, and the corresponding integral representations for transition-probability matrices. In: Probability and Statistics, The Harald Cramer Volume, U. Grenander (ed.), Stockholm Almqvist and Wiksell (New York: John Wiley and Sons) (1959). 
MR 0116389[9] D. G. Kendall: 
Geometric ergodicity and the theory of queues. In: Mathematical methods in the social sciences, K. J. Arrow, S. Karlin, P. Suppes (ed.), Stanford, California (1960). 
MR 0124088[10] P. Kratochvíl: 
On convergence of homogeneous Markov chains. Apl. mat. 28 (1983), 2, 116-119. 
MR 0695185[12] T. A. Сарымсаков: 
Основы теории процессов Наркова. Государственное издателство технико-теоретической литературы, Москва (1954). 
Zbl 0995.90535[13] Т. А. Sarymsakov: On the theory of inhomogeneous Markov chains. (in Russian). Dokl, Akad. Nauk Uzbek. S.S.R. 8 (1956), 3-7.