Previous |  Up |  Next

Article

Title: A contractive property in finite state Markov chains (English)
Author: Kratochvíl, Petr
Author: Lešanovský, Antonín
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 35
Issue: 3
Year: 1985
Pages: 491-509
Summary lang: Russian
.
Category: math
.
MSC: 15A51
MSC: 60J10
idZBL: Zbl 0601.60072
idMR: MR803042
DOI: 10.21136/CMJ.1985.102037
.
Date available: 2008-06-09T15:06:34Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102037
.
Reference: [1] F. L. Bauer E. Deutsch J. Stoer: Abschätzungen für die Eigenwerte positiver linearen Operatoren.Linear Algebra and Applications, 2 (1969), 275-331. MR 0245587
Reference: [2] G Birkhoff: Lattice Theory.3rd ed.. Amer. Math. Soc. Colloq. Publ. Vol. XXV, Providence, R. I.(1967). Zbl 0153.02501, MR 0227053
Reference: [3] K. L. Chung: Markov chains with stationary transition probabilities.Springer-Verlag, Berlin-Göttingen-Heidelberg (1960). Zbl 0092.34304, MR 0116388
Reference: [4] R. L. Dobrushin: Central limit theorem for non-stationary Markov chains I, II.Theory Prob. Apl. 1 (1956), 63-80, 329-383 (EngHsh translation). Zbl 0093.15001, MR 0086436
Reference: [5] J. Hajnal: Weak ergodicity in non-homogeneous Markov chains.Proc. Camb. Phil. Soc. 54(1958), 233-246. Zbl 0082.34501, MR 0096306, 10.1017/S0305004100033399
Reference: [6] S. Karlin: A first course in stochastic processes.Academic Press, New York and London (1968). Zbl 0177.21102, MR 0208657
Reference: [7] J. G. Kemeny J. L. Snell: Finite Markov chains.D. van Nostrand Соrр., New York (1960). MR 0115196
Reference: [8] D. G. Kendall: Unitary dilatations of Markov transition operators, and the corresponding integral representations for transition-probability matrices.In: Probability and Statistics, The Harald Cramer Volume, U. Grenander (ed.), Stockholm Almqvist and Wiksell (New York: John Wiley and Sons) (1959). MR 0116389
Reference: [9] D. G. Kendall: Geometric ergodicity and the theory of queues.In: Mathematical methods in the social sciences, K. J. Arrow, S. Karlin, P. Suppes (ed.), Stanford, California (1960). MR 0124088
Reference: [10] P. Kratochvíl: On convergence of homogeneous Markov chains.Apl. mat. 28 (1983), 2, 116-119. MR 0695185
Reference: [11] A. Paz: Introduction to Probabilistic Automata.Academic Press, New York (1971). Zbl 0234.94055, MR 0289222
Reference: [12] T. A. Сарымсаков: Основы теории процессов Наркова.Государственное издателство технико-теоретической литературы, Москва (1954). Zbl 0995.90535
Reference: [13] Т. А. Sarymsakov: On the theory of inhomogeneous Markov chains.(in Russian). Dokl, Akad. Nauk Uzbek. S.S.R. 8 (1956), 3-7.
Reference: [14] E. Seneta: On the historical development of the theory of finite inhomogeneous Markov chains.Proc. Camb. Phil. Soc. 74 (1973), 507-513. Zbl 0271.60074, MR 0331522, 10.1017/S0305004100077276
Reference: [15] E. Seneta: Coefficients of ergodicity. Structure and applications.Adv. Appl. Prob. 11 (1979), 576-590. Zbl 0406.60060, MR 0533060, 10.1017/S000186780003281X
Reference: [16] D. Vere-Jones: Geometric ergodicity in denumerable Markov chains.Quart. J. Math. Oxford (2), 13 (1962), 7-28. Zbl 0104.11805, MR 0141160, 10.1093/qmath/13.1.7
.

Files

Files Size Format View
CzechMathJ_35-1985-3_14.pdf 1.741Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo