[3] J. Bliedtner W. Hansen: 
Simplicial cones in potential theory II (approximation theorems). Inventiones math. 46 (1978), 255-275. 
DOI 10.1007/BF01390278 | 
MR 0492345[4] J. Bliedtner W. Hansen: 
The weak Dirichlet problem. J. Reine Angew. Math. 348 (1984), 34-39. 
MR 0733921[5] M. Brelot: 
Sur un théorème de prolongement fonctionnel de Keldych concernant le problème de Dirichlet. J. Analyse Math. 8 (1960/61), 273-288. 
DOI 10.1007/BF02786852 | 
MR 0125245[9] M. V. Keldych: 
On the solvability and stability of the Dirichlet problem. (in russian), Usp. Mat. Nauk SSSR 8 (1941), 171-231. 
MR 0005249[10] J. Lukeš: 
Théorème de Keldych dans la théorie axiomatique de Bauer des fonctions harmoniques. Czech. Math. Journal 24 (1974), 114-125. 
MR 0350046[11] J. Lukeš: 
Functional approach to the Brelot-Keldych theorem. Czech. Math. Journal 27 (1977), 609-616. 
MR 0588523[13] J. Lukeš I. Netuka: 
The Wiener type solution of the Dirichlet problem in potential theory. Math. Ann. 224 (1976), 173-178. 
DOI 10.1007/BF01436200 | 
MR 0422652[14] A. F. Monna: Het probleem van Dirichlet. Nieuw Arch. Wisk. 19 (1938), 249-256.
[15] A. F. Monna: 
On the Dirichlet problem and the method of sweeping out. Nederl. Akad. Wetensch. Proc. 42 (1939), 491-498. 
Zbl 0023.04403[16] I. Netuka: 
The classical Dirichlet problem and its generalizations. Potential theory Copenhagen 1979, In: Lecture Notes in Mathematics, Vol. 787, Berlin, Heidelberg, New York: Springer 1980. 
MR 0587843[18] N. Ninomiya: 
Sur le caractère fonctionelle de la solution du problème de Dirichlet. Math. J. Okayama Univ. 2 (1952), 41-48. 
MR 0052596