Previous |  Up |  Next

Article

Title: Periodic solutions to Maxwell equations in nonlinear media (English)
Author: Krejčí, Pavel
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 2
Year: 1986
Pages: 238-258
Summary lang: Russian
.
Category: math
.
MSC: 35B10
MSC: 35L60
MSC: 35Q20
MSC: 78A25
idZBL: Zbl 0614.35014
idMR: MR831312
DOI: 10.21136/CMJ.1986.102088
.
Date available: 2008-06-09T15:10:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102088
.
Reference: [1] M. Altman: (A series of papers on nonlinear evolution equations).Nonlin. Anal., Theory, Meth., Appl. 8 (1984), No. 5, pp. 457-499. MR 0741601, 10.1016/0362-546X(84)90089-0
Reference: [2] E. B. Bykhovsky: Solution to the mixed problem for Maxwell equations in case of ideally conductive boundary.Vest. Leningrad. Univ., ser. Mat., Mech., Astr. 13 (1957), pp. 50-66 (Russian).
Reference: [3] W. Craig: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations.Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X (1983), pp. 125-168. Zbl 0518.35057, MR 0713113
Reference: [4] B. D. Craven M. Z. Nashed: Generalized implicit function theorems when the derivative has no bounded inverse.Nonlin. Anal., Theory, Meth., Appl. 6 (1982), pp. 375-387. MR 0654813, 10.1016/0362-546X(82)90023-2
Reference: [5] G. Duvaut J.-L. Lions: Les inéquations en mécanique et en physique.Dunod, Paris 1972. MR 0464857
Reference: [6] M. R. Hestenes: Extension of the range of a differentiable function.Duke Math. J. 8 (1941), pp. 183-192. Zbl 0024.38602, MR 0003434, 10.1215/S0012-7094-41-00812-8
Reference: 17] L. Hörmander: The boundary problems of physical geodesy.Arch. Rat. Mech. Anal. 62 (1976), pp. 1-52. MR 0602181, 10.1002/cpa.3160330104
Reference: [8] S. Klainerman: Global existence for nonlinear wave equations.Comm. Pure Appl. Math. 33 (1980), p. 43-101. Zbl 0405.35056, MR 0544044
Reference: [9] P. Krejčí: Periodic vibrations of the electromagnetic field in ferromagnetic media.Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1984 (Czech).
Reference: [10] P. Krejčí: Hard implicit function theorem and small periodic solutions to partial differential equations.Comm. Math. Univ. Carolinae 25 (3), 1984, pp. 519-536. MR 0775567
Reference: [11] O. А. Ladyzhenskaya V. А. Solonnikov: On the linearization principle and invariant manifolds for problems in magnetohydrodynamics. In "Boundary value problems of mathematical physics and related problems of function theory 7.".Zap. Nautch. Sem. LOMI 38 (1973), pp. 46-93 (Russian). MR 0377310
Reference: [12] O. A. Ladyzhenskaya N. N. Uraltseva: Linear and quasilinear equations of elliptic type."Nauka", Moscow 1973 (Russian). MR 0509265, 10.2977/prims/1195189813
Reference: [13] A. Matsumura: Global existence and asymptotics of the solutions of the second order quasilinear hyperbolic equations with the first order dissipation.Publ. R.I.M.S., Kyotov Univ., 13 (1977), pp. 349-379. Zbl 0371.35030, MR 0470507, 10.1007/BF01765154
Reference: [14] A. Milani: Local in time existence for the complete Maxwell equations with monotone characteristic in a bounded domain.Ann. Mat. Рurа Appl. (4) 131 (1982), pp. 233 - 254. Zbl 0498.35077, MR 0681565, 10.1073/pnas.47.11.1824
Reference: [15] J. Moser: A new technique for the construction of solutions of nonlinear differential equations.Proc. Nat. Acad. Sci. 47 (1961), pp. 1824-1831. Zbl 0104.30503, MR 0132859
Reference: [16] J. Moser: A rapidly-convergent iteration method and non-linear differential equations.Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265-315 and 499-535. Zbl 0174.47801, 10.2307/1969989
Reference: [17] J. Nash: The embedding problem for Riemannian manifolds.Ann. of Math. 63 (1956), pp. 20-63. MR 0075639
Reference: [18] L. Nirenberg: On elliptic partial differential equations.Ann. Scuola Norm. Sup. Pisa, 13 (1959), pp. 115-162. Zbl 0088.07601, MR 0109940, 10.3792/pjaa.58.391
Reference: [19] Y. Niwa: Existence of global solutions for nonlinear wave equations.Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), pp. 391-394. Zbl 0548.35078, MR 0694942
Reference: [20] H. Petzeltová: Application of Moser's method to a certain type of evolution equations.Czech. Math. J. 33 (1983), pp. 427-434. Zbl 0547.35081, MR 0718925, 10.1007/BF02925655
Reference: [21] G. Prouse: Su alcuni problemi connessi con la risoluzione delle equazioni di Maxwell.Rend. Sem. Mat. Fis. Milano 44 (1974), pp. 95-118. MR 0411370, 10.1002/cpa.3160220103
Reference: [22] P. H. Rabinowitz: Periodic solutions of nonlinear hyperbolic partial differential equations II.Comm. Pure Appl. Math. 22 (1969), pp. 15-39. Zbl 0157.17301, MR 0236504, 10.1002/cpa.3160130311
Reference: [23] J. T. Schwartz: On Nash's implicit functional theorem.Comm. Pure Appl. Math. 13 (1960), pp. 509-530. Zbl 0178.51002, MR 0114144, 10.1016/0022-0396(82)90102-4
Reference: [24] J. Shatah: Global existence of small solutions to nonlinear evolution equations.J. Diff. Eq. (46) (1982), pp. 409-425. Zbl 0518.35046, MR 0681231
Reference: [25] Y. Shibata: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain.Funkc. Ekv. 25 (1982), pp. 303-345. MR 0707564, 10.21099/tkbjm/1496159662
Reference: [26] Y. Shibata: On the global existence of classical solutions of second-order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain.Tsukuba J. Math. 7 (1983), pp. 1-68. Zbl 0524.35071, MR 0703667
Reference: [27] J. A. Stratton: Electromagnetic theory.Mc. Graw - Hill Book Co., Inc., New York 1941.
.

Files

Files Size Format View
CzechMathJ_36-1986-2_10.pdf 2.071Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo