Previous |  Up |  Next

Article

Title: On the oscillatory behavior of solutions of second order nonlinear differential equations (English)
Author: Graef, John R.
Author: Spikes, Paul W.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 2
Year: 1986
Pages: 275-284
Summary lang: Russian
.
Category: math
.
MSC: 34C15
idZBL: Zbl 0627.34034
idMR: MR831315
DOI: 10.21136/CMJ.1986.102091
.
Date available: 2008-06-09T15:10:36Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102091
.
Reference: [1] L. Chen: Some remarks on oscillation of second order differential equations.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 67 (1979), 45-52. Zbl 0473.34013, MR 0617274
Reference: [2] L. Chen, С. Yeh: Oscillation theorems for second order nonlinear differential equations with an "integrally small" coefficient.J. Math. Anal. Appl. 78 (1980), 49-57. Zbl 0445.34007, MR 0595763, 10.1016/0022-247X(80)90209-7
Reference: [3] Y. I. Domshlak: Oscillation of solutions of second-order differential equations.Differential'nye Uravnenija 7 (1971), 205-214 (Russian).
Reference: [4] S. R. Grace, B. S. Lalli: Oscillation theorems for certain second order perturbed nonlinear differential equations.J. Math. Anal. Appl. 77 (1980), 205-214. Zbl 0443.34031, MR 0591271, 10.1016/0022-247X(80)90270-X
Reference: [5] J. R. Graef, P. W. Spikes: Asymptotic behavior of the nonoscillatory solutions of differential equations with integrable coefficients.Publ. Math. Debrecen, to appear. Zbl 0637.34046, MR 0834772
Reference: [6] M. K. Grammatikopoulos: Oscillation theorems for second order ordinary differential inequalities and equations with alternating coefficients.An. Stiint. Univ. "Al. I. Cuza" lasi Sect. la Mat. 26 (1980), 67-76. Zbl 0442.34031, MR 0582469
Reference: [7] V. L. Jannelli: Sull'esistenza ed il comportamento asintotico di una classe di soluzioni monotone dell'equazione $(р(х)f(у)у')' =- q(x) g(y)$.Boll. Un. Mat. Ital. С (6) 2 (1983), 307-316.
Reference: [8] I. V. Kamenev: Oscillation of solutions of a second-order differential equation with an "integrally small" coefficient.Differential'nye Uravnenija 13 (1977), 2141 - 2148 (Russian). Zbl 0411.34043, MR 0477271
Reference: [9] M. R. Kulenovic, M. K. Grammatikopoulos: On the asymptotic behavior of second order differential inequalities with alternating coefficients.Math. Nachr. 98 (1980), 317-327. Zbl 0471.34025, MR 0623709, 10.1002/mana.19800980124
Reference: [10] T. Kura: Oscillation theorems for a second order sublinear ordinary differential equation.Proc. Amer. Math. Soc. 84 (1982), 535-538. Zbl 0488.34022, MR 0643744, 10.1090/S0002-9939-1982-0643744-8
Reference: [11] T. Kusano H. Onose, H. Tobe: On the oscillation of second order nonlinear ordinary differential equations.Hiroshima Math. J. 4 (1974), 491 - 499. MR 0377183, 10.32917/hmj/1206136836
Reference: [12] M. K. Kwong, J. S. W. Wong: An application of integral inequality to second order nonlinear oscillation.J. Differential Equations 46 (1982), 63 - 77. Zbl 0503.34021, MR 0677584, 10.1016/0022-0396(82)90110-3
Reference: [13] M. K. Kwong, J. S. W. Wong: Linearization of second-order nonlinear oscillation theorems.Trans. Amer. Math. Soc. 279 (1983), 705-722. Zbl 0544.34024, MR 0709578, 10.1090/S0002-9947-1983-0709578-6
Reference: [14] W. E. Mahfoud, S. M. Rankin: Some properties of solutions of $(r(t) \psi(x) x')' + a(t) f(x) = 0$.SIAM J. Math. Anal. 10 (1979), 49-54. Zbl 0397.34004, MR 0516748, 10.1137/0510005
Reference: [15] Ch. G. Philos: Oscillation of sublinear differential equations of second order.Nonlinear Anal. 7 (1983), 1071-1080. Zbl 0525.34028, MR 0719359, 10.1016/0362-546X(83)90016-0
Reference: [16] Ch. G. Philos: A second order superlinear oscillation criterion.Canad. Math. Bull. 27 (1984), 102-112. Zbl 0494.34023, MR 0725258, 10.4153/CMB-1984-015-0
Reference: [17] V. A. Staikos, Y. G. Sficas: Oscillations for forced second order nonlinear differential equations.Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 60 (1973), 25-30. MR 0369814
Reference: [18] W. Walter: Differential and Integral Inequalities.Springer-Verlag, Berlin/New York, 1970. Zbl 0252.35005, MR 0271508
Reference: [19] С. С. Yeh: An oscillation criterion for second order nonlinear differential equations with functional arguments.J. Math. Anal. Appl. 76 (1980), 72-76. Zbl 0465.34043, MR 0586644, 10.1016/0022-247X(80)90059-1
Reference: [20] С. С. Yeh: Oscillation theorems for nonlinear second order differential equations with damped term.Proc. Amer. Math. Soc. 84 (1982), 397-402. Zbl 0498.34023, MR 0640240, 10.1090/S0002-9939-1982-0640240-9
Reference: [21] С. С. Yeh: Comparison theorems for second order nonlinear differential equations.to appear. Zbl 0736.34021
.

Files

Files Size Format View
CzechMathJ_36-1986-2_13.pdf 1.078Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo