Previous |  Up |  Next

Article

Title: On complete lifts of reductive homogeneous spaces and generalized symmetric spaces (English)
Author: Sekizawa, Masami
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 4
Year: 1986
Pages: 516-534
Summary lang: Russian
.
Category: math
.
MSC: 53C30
idZBL: Zbl 0615.53042
idMR: MR863184
DOI: 10.21136/CMJ.1986.102113
.
Date available: 2008-06-09T15:12:22Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102113
.
Reference: [1] N. Bourbaki: Éléments de Mathématique, Groupes et al gébres de Lie.Chapitre III, Groupes de Lie, Herman, Paris, 1971, 1972. MR 0453824
Reference: [2] J. Černý, O. Kowalski: Classification of generalized symmetric pseudo-Riemannian spaces of dimension $n \leq 4$.Tensor, N.S. 38 (1982), 255-267. MR 0832656
Reference: [3] S. Kobayashi: Theory of connections.Annali di Mat. 43 (1957), 119-194. MR 0096276, 10.1007/BF02411907
Reference: [4] S. Kobayashi, K. Nomizu: Foundations of differential geometry.Interscience Publ., New York, London, I (1963); II (1969). Zbl 0119.37502
Reference: [5] O. Kowalski: Generalized symmetric spaces.Lecture Note in Mathematics 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. Zbl 0431.53042, MR 0579184
Reference: [6] A. J. Ledger, M. Obata: Affine and Riemannian $s$-manifolds.J. Differential Geometry 2 (1968), 451-459. Zbl 0177.24602, MR 0244893, 10.4310/jdg/1214428660
Reference: [7] K. Nomizu: Invariant affine connections on homogeneous spaces.Amer. J. Math. 76 (1954), 33-65. Zbl 0059.15805, MR 0059050, 10.2307/2372398
Reference: [8] E. M. Patterson, A. G. Walker: Riemann extensions.Quart. J. Math. Oxford 3 (1952), 19-28. Zbl 0048.15603, MR 0048131, 10.1093/qmath/3.1.19
Reference: [9] M. Sekizawa: Lifts of generalized symmetric spaces to tangent bundles.to appear. Zbl 0639.53057, MR 0905973
Reference: [10] N. A. Stepanov: The tangent bundle of $\phi$-spaces.Soviet Math. (Iz. VUZ) 27 (1983), 94-103. MR 0694017
Reference: [11] M. Toomanian: Riemann extensions and complete lifts of $s$-spaces.Ph. D. Thesis, The University, Southampton, 1975.
Reference: [12] M. Toomanian: Killing vectorfields and infinitesimal affine transformations on a generalized Riemann extension.Tensor, N.S. 32 (1978), 335 - 338. Zbl 0384.53020, MR 0516373
Reference: [13] K. Yano, S. Ishihara: Tangent and cotangent bundles.Marcel Dekker, Inc., New York, 1973. Zbl 0262.53024, MR 0350650
Reference: [14] K. Yano, S. Kobayashi: Prolongations of tensor fields and connections to tangent bundles.J. Math. Soc. Japan, I 18 (1966), 194-210; II 18 (1966), 236-246. Zbl 0147.21501, 10.2969/jmsj/01820194
Reference: [15] M. Toomanian: Regular $s$-structure on TM.Tensor, N. S. 42 (1985), 225-228. Zbl 0589.53054, MR 0847040
.

Files

Files Size Format View
CzechMathJ_36-1986-4_2.pdf 2.399Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo