Previous |  Up |  Next

Article

Title: Some partial formulae for Stiefel-Whitney classes of Grassmannians (English)
Author: Korbaš, Július
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 36
Issue: 4
Year: 1986
Pages: 535-540
Summary lang: Russian
.
Category: math
.
MSC: 57R20
MSC: 57T15
idZBL: Zbl 0623.57014
idMR: MR863185
DOI: 10.21136/CMJ.1986.102114
.
Date available: 2008-06-09T15:12:31Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102114
.
Reference: [1] Borel A.: La cohomologie mod 2 de certains espaces homogènes.Comment. Math. Helvetici 27, 165-197 (1953). MR 0057541, 10.1007/BF02564561
Reference: [2] Bartík V., Korbaš J.: Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds.Rend. Circ. Mat. Palermo (2) (Suppl. 6), 19-29 (1984). MR 0782702
Reference: [3] Hsiang W. C., Szcarba R. H.: On the tangent bundle of a Grassmann manifold.Amer. J. Math. 86, 698-704 (1964). MR 0172304, 10.2307/2373153
Reference: [4] Korbaš J.: On the Stiefel-Whitney classes and the span of Grassmann manifolds.(to appear).
Reference: [5] Milnor J., Stasheff J.: Characteristic classes.Annals of Mathematics Studies 76. Princeton: Princeton University Press 1974. Zbl 0298.57008, MR 0440554
Reference: [6] Mosher R. E., Tangora M. C.: Cohomology operations and applications in homotopy theory.New York, Evanston and London: Harper & Row 1968. Zbl 0153.53302, MR 0226634
Reference: [7] Oproiu V.: Some non-embedding theorems for the Grassmann manifolds $G_{2,n}$ and $G_{3,n}$.Proc. Edinburgh. Math. Soc. 20, 177-185 (1976-77). MR 0445530, 10.1017/S0013091500026249
Reference: [8] Oproiu V.: Some results concerning the non-embedding codimension of Grassmann manifolds in Euclidean spaces.Rev. Roumaine Math. Pures Appl. XXVI, 275-286 (1981). Zbl 0465.57011, MR 0616042
Reference: [9] Thomas E.: On tensor products of $n$-plane bundles.Arch. Math. (Basel) X, 174-179 (1959). Zbl 0192.29501, MR 0107234, 10.1007/BF01240783
Reference: [10] Thomas E.: Vector fields on manifolds.Bull. Amer. Math. Soc. 75, 643-683 (1969). Zbl 0183.51703, MR 0242189, 10.1090/S0002-9904-1969-12240-8
.

Files

Files Size Format View
CzechMathJ_36-1986-4_3.pdf 754.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo