Previous |  Up |  Next

Article

Title: Optimal stopping and impulsive control of one-dimensional diffusion processes (English)
Author: Thomas, Robin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 2
Year: 1987
Pages: 271-292
Summary lang: Russian
.
Category: math
.
MSC: 60G40
MSC: 60H10
MSC: 60J60
MSC: 93E20
idZBL: Zbl 0639.93067
idMR: MR882599
DOI: 10.21136/CMJ.1987.102154
.
Date available: 2008-06-09T15:15:44Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102154
.
Reference: [1] A. Bensoussan: Optimal impulsive control theory.Lecture notes control and information sc. 16, 1980. MR 0547464
Reference: [2] A. Bensoussan J. L. Lions: Applications des inéquations variationnelles en contrôle stochastique.Dunod, Paris, 1978. MR 0513618
Reference: [3] G. Birkhoff: Lattice theory.Providence, Rhode Island, 1967. Zbl 0153.02501, MR 0227053
Reference: [4] E. B. Dynkin: Markov processes.Mir, Moscow, 1963. Zbl 0158.16806, MR 0193670
Reference: [5] D. Kinderlehrer G. Stampacchia: An introduction to variational inequalities and their applications.Academic Press, 1980. MR 0567696
Reference: [6] P. Mandl: Analytical treatment of one-dimensional Markov processes.Academia, Praha, 1968. Zbl 0179.47802, MR 0247667
Reference: [7] B. Oksendal: An introduction to stochastic differential equations with applications.Preprint 1983.
Reference: [8] J. Saint-Raymond: Boreliens à coupes $K\sb{\sigma }$.Bull. Soc. Math. France 104 (1976), 389-400. MR 0433418, 10.24033/bsmf.1835
Reference: [9] A. N. Širjajev: Optimal stopping rules.Springer-Verlag, 1978. MR 0468067
Reference: [10] A. D. Ventcel: A course in the theory of random processes.Nauka, Moscow, 1975 (Russian). MR 0431314
.

Files

Files Size Format View
CzechMathJ_37-1987-2_9.pdf 1.954Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo