Previous |  Up |  Next

Article

Title: Uniquely realizable score lists in bipartite tournaments (English)
Author: Bagga, Kunwarjit S.
Author: Beineke, Lowell W.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 2
Year: 1987
Pages: 323-333
Summary lang: Russian
.
Category: math
.
MSC: 05C20
idZBL: Zbl 0626.05019
idMR: MR882605
DOI: 10.21136/CMJ.1987.102160
.
Date available: 2008-06-09T15:16:12Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102160
.
Reference: [1] P. Avery: The condition for a tournament score sequence to be simple.J. Graph Theory 4 (1980), 157-164. MR 0570350, 10.1002/jgt.3190040204
Reference: [2] L. W. Beineke: A tour through tournaments or bipartite and ordinary tournaments: A comparative survey.Combinatorics, London Mathematical Society Lecture Note Series 52, Cambridge University Press (1981), pp. 41 - 55. MR 0633648
Reference: [3] L. W. Beineke, J. W. Moon: On bipartite tournaments and scores.in The Theory and Applications of Graphs (ed. G. Chartrand et al), Wiley (1981), pp. 55 - 71. Zbl 0473.05031, MR 0634516
Reference: [4] D. Gale: A theorem of flows in networks.Pacific J. Math. 7 (1957), 1073-1082. MR 0091855, 10.2140/pjm.1957.7.1073
Reference: [5] M. Koren: Pairs on sequences with a unique realization by bipartite graphs.J. Combin. Theory 21 (1976), 224-234. MR 0444525, 10.1016/S0095-8956(76)80006-8
Reference: [6] J. W. Moon: On the score sequence of an n-partite tournament.Canadian Math. Bulletin 5 (1962), 51-58. MR 0133246, 10.4153/CMB-1962-008-9
Reference: [7] H. J. Ryser: Combinatorial Mathematics.Cams Mathematical Monographs No. 14, MAA, Washington, 1963. Zbl 0112.24806, MR 0150048
.

Files

Files Size Format View
CzechMathJ_37-1987-2_15.pdf 1.315Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo