Previous |  Up |  Next

Article

Title: Natural transformations in differential geometry (English)
Author: Kainz, Gerd
Author: Michor, Peter W.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 37
Issue: 4
Year: 1987
Pages: 584-607
.
Category: math
.
MSC: 53C99
MSC: 58A05
idZBL: Zbl 0654.58001
idMR: MR913992
DOI: 10.21136/CMJ.1987.102187
.
Date available: 2008-06-09T15:18:23Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102187
.
Reference: [1] H. Federer: Geometric measure theory.Grundlehren Band 153, Springer Verlag 1969. Zbl 0176.00801, MR 0257325
Reference: [2] D. B. A. Epstein W. P. Thurston: Transformation groups and natural bundles.Proc. London Math. Soc. (III), 38 (1979), 219-236. MR 0531161
Reference: [3] A. Kock: Synthetic differential geometry.London Math. Society, Lecture Note Series 51, 1981. Zbl 0487.18006, MR 0649622
Reference: [4] I. Kolář: Natural transformations of the second tangent functor into itself.Arch. Math. (Brno) 4, 1984. MR 0784868
Reference: [5] A. Kriegl: Die richtigen Räume für Analysis im Unendlichdimensionalen.Monatshefte Math. 94 (1982), 109-124. MR 0678046, 10.1007/BF01301929
Reference: [6] I. Moerdijk K. E. Reyes: The tangent functor category revisited.Preprint, Amsterdam 1983.
Reference: [7] I. Moerdijk С. E. Reyes: $C^∞$-rings.Preprint Montréal 1984.
Reference: [8] В. L. Reinhart: Differential geometry of foliations.Ergebnisse 99, Springer-Verlag 1983. Zbl 0506.53018, MR 0705126
Reference: [9] I. Rosický: Abstract tangent functors.Preprint Brno 1984. MR 0800500
Reference: [10] S. Šwierczkowski: A description of the tangent functor category.Coll. Math. 31 (1974). MR 0379628
Reference: [11] С. L. Terng: Natural vector bundles and natural differential operators.Amer. J. Math. 100, 775-828. Zbl 0422.58001, MR 0509074
Reference: [12] A. Vanžurová: On geometry of the third tangent bundle.Acta Univ. Olom. 82 (1985). MR 0879025
Reference: [13] A. Weil: Théorie des points proches sur les variétés differentiables.in Colloq. Top et Geo. Diff., Strassbourg 1953, 111-117. Zbl 0053.24903, MR 0061455
Reference: [14] J. E. White: The method of iterated tangents with applications in local Riemannian geometry.Pitman 1982. Zbl 0478.58002, MR 0693620
Reference: [15] David J. Eck: Product preserving functors on smooth manifolds.preprint 1985. MR 0857563
Reference: [16] O. O. Luciano: Categories of multiplicative functors and Morimoto's Conjecture.Preprint 1986.
.

Files

Files Size Format View
CzechMathJ_37-1987-4_11.pdf 2.842Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo