Previous |  Up |  Next

Article

Title: Closure operators on the lattice of radical classes of lattice ordered groups (English)
Author: Jakubík, Ján
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 1
Year: 1988
Pages: 71-77
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0655.06012
idMR: MR925941
DOI: 10.21136/CMJ.1988.102201
.
Date available: 2008-06-09T15:19:21Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102201
.
Reference: [I] P. Conrad: $K$-radical classes of lattice ordered groups.Algebra Carbondale 1980, Lecture Notes in Mathematics 848, Springer Verlag 1981, 186-207. MR 0613186
Reference: [2] P. Conrad: The structure of lattice ordered groups with a finite number of disjoint elements.Michigan Math. Journ. 7, 1960, 171-180. MR 0116059, 10.1307/mmj/1028998387
Reference: [3] P. Conrad: Lattice ordered groups.Tulane Lecture Notes, Tulane University, 1970. Zbl 0258.06011
Reference: [4] M. Darnel: Closure operators on radicals of lattice ordered groups.Czechoslov. Math. J. 37,1987,51-64. MR 0875127
Reference: [5] L. Fuchs: Partially ordered algebraic systems.Pergamon Press, Oxford 1963. Zbl 0137.02001, MR 0171864
Reference: [6] W. C. Holland: Varieties of 1-groups are torsion classes.Czechoslov. Math. J. 29, 1979, 11-12. MR 0518135
Reference: [7] J. Jakubík: Radical mappings and radical classes of lattice ordered groups.Symposia Mathematica 21, Academic Press 1977, 451-477. MR 0491397
Reference: [8] J. Jakubík: Products of radical classes of lattice ordered groups.Acta Math. Univ. Comenianae 39, 1980, 31-41. MR 0619260
Reference: [9] J. Jakubík: On $K$-radical classes of lattice ordered groups.Czechoslov. Math. J. 33, 1983, 149-163. MR 0687428
Reference: [10] N. Ja. Medvedev: On the lattice of radicals of a finitely generated 1-group.(In Russian.) Math. Slovaca 33, 1983, 185-188. MR 0699088
.

Files

Files Size Format View
CzechMathJ_38-1988-1_4.pdf 886.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo