Previous |  Up |  Next

Article

References:
[I] J. Berglund, N. Hindman: Filters and the weak almost periodic compactification of a discrete semigroup. Trans. Amer. Math. Soc. 284 (1984), 1-38. DOI 10.1090/S0002-9947-1984-0742410-4 | MR 0742410 | Zbl 0548.22002
[2] J. Berglund H. Junghenn, and P. Milnes: Compact right topological semigroups and generalizations of almost periodicity. Lecture Notes in Math. 663 (1978). DOI 10.1007/BFb0061381 | MR 0513591
[3] R. Ellis: Locally compact transformation groups. Duke Math. J. 24 (1957), 119-215. DOI 10.1215/S0012-7094-57-02417-1 | MR 0088674 | Zbl 0079.16602
[4] L. Gillman, M. Jerison: Rings of continuous functions. van Nostrand, Princeton, 1960. MR 0116199 | Zbl 0093.30001
[5] E. Hewitt: On two problems of Urysohn. Annals of Math. 47 (1946), 503-509. DOI 10.2307/1969089 | MR 0017527 | Zbl 0060.39511
[6] P. Milnes: An extension theorem for functions on semigroups. Proc. Amer. Math. Soc. 55 (1976), 152-154. DOI 10.1090/S0002-9939-1976-0420153-5 | MR 0420153 | Zbl 0319.22002
[7] P. Milnes: Compactifications of semitopological semigroups. J. Australian Math. Soc. 15 (1973), 488-503. DOI 10.1017/S1446788700028858 | MR 0348030 | Zbl 0266.22002
[8] T. Mitchell: Topological semigroups and fixed points. Illinois J. Math. 14 (1970), 630-641. MR 0270356 | Zbl 0219.22003
[9] I. Namioka: Right topological groups, distal flows, and a fixed point theorem. Math. Systems Theory 6 (1972), 193-209. DOI 10.1007/BF01706088 | MR 0316619 | Zbl 0239.22001
[10] С. Rao: Invariant means on spaces of continuous or measurable functions. Trans. Amer. Math. Soc. 114 (1965), 187-196. DOI 10.2307/1993996 | MR 0174938 | Zbl 0139.30901
[11] L. Steen, J. Seebach: Counterexamples in topology. second edition. Springer-Verlag, New York, 1978. MR 0507446 | Zbl 0386.54001
Partner of
EuDML logo