Previous |  Up |  Next

Article

Title: The $LMC$-compactification of a topologized semigroup (English)
Author: Hindman, Neil
Author: Milnes, Paul
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 38
Issue: 1
Year: 1988
Pages: 103-119
.
Category: math
.
MSC: 22A20
MSC: 54D35
idZBL: Zbl 0655.22001
idMR: MR925945
DOI: 10.21136/CMJ.1988.102205
.
Date available: 2008-06-09T15:19:40Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102205
.
Reference: [I] J. Berglund, N. Hindman: Filters and the weak almost periodic compactification of a discrete semigroup.Trans. Amer. Math. Soc. 284 (1984), 1-38. Zbl 0548.22002, MR 0742410, 10.1090/S0002-9947-1984-0742410-4
Reference: [2] J. Berglund H. Junghenn, and P. Milnes: Compact right topological semigroups and generalizations of almost periodicity.Lecture Notes in Math. 663 (1978). MR 0513591, 10.1007/BFb0061381
Reference: [3] R. Ellis: Locally compact transformation groups.Duke Math. J. 24 (1957), 119-215. Zbl 0079.16602, MR 0088674, 10.1215/S0012-7094-57-02417-1
Reference: [4] L. Gillman, M. Jerison: Rings of continuous functions.van Nostrand, Princeton, 1960. Zbl 0093.30001, MR 0116199
Reference: [5] E. Hewitt: On two problems of Urysohn.Annals of Math. 47 (1946), 503-509. Zbl 0060.39511, MR 0017527, 10.2307/1969089
Reference: [6] P. Milnes: An extension theorem for functions on semigroups.Proc. Amer. Math. Soc. 55 (1976), 152-154. Zbl 0319.22002, MR 0420153, 10.1090/S0002-9939-1976-0420153-5
Reference: [7] P. Milnes: Compactifications of semitopological semigroups.J. Australian Math. Soc. 15 (1973), 488-503. Zbl 0266.22002, MR 0348030, 10.1017/S1446788700028858
Reference: [8] T. Mitchell: Topological semigroups and fixed points.Illinois J. Math. 14 (1970), 630-641. Zbl 0219.22003, MR 0270356, 10.1215/ijm/1256052955
Reference: [9] I. Namioka: Right topological groups, distal flows, and a fixed point theorem.Math. Systems Theory 6 (1972), 193-209. Zbl 0239.22001, MR 0316619, 10.1007/BF01706088
Reference: [10] С. Rao: Invariant means on spaces of continuous or measurable functions.Trans. Amer. Math. Soc. 114 (1965), 187-196. Zbl 0139.30901, MR 0174938, 10.2307/1993996
Reference: [11] L. Steen, J. Seebach: Counterexamples in topology.second edition. Springer-Verlag, New York, 1978. Zbl 0386.54001, MR 0507446
.

Files

Files Size Format View
CzechMathJ_38-1988-1_8.pdf 2.424Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo