Previous |  Up |  Next

Article

References:
[1] Bartík v.: General bridge-mapping theorem. Comment. Math. Univ. Carolinae 16, 4 (1975), 693-698 (Russian). MR 0391092
[2] Bartík V.: On the bijectivity of the canonical transformation $[\beta X;Y]\rightarrow [X;Y]$. Quart. J. Math. Oxford (2), 29 (1978), 77-91. DOI 10.1093/qmath/29.1.77 | MR 0493853
[3] Bartík V.: On the bijectivity of the canonical transformation $[\beta\sb{G} X;Y]\sb{G} \rightarrow [X;Y]\sb{G}$. Abstracts of 4th International Conference ,,Topology and its Applications", Dubrovnik, Sept. 30-Oct. 5 1985, Zagreb 1985.
[4] Borel A.: Seminar on transformation groups. Annals of Math. Studies 46, Princeton University Press, 1960. MR 0116341 | Zbl 0091.37202
[5] Bredon G. E.: Introduction to compact transformation groups. New York, 1972. MR 0413144 | Zbl 0246.57017
[6] Colder A., Siegel J.: Homotopy and uniform homotopy. Trans. Amer. Math. Soc. 235 (1978), 245-270. DOI 10.1090/S0002-9947-1978-0458416-6 | MR 0458416
[7] Calder A., Siegel J.: Homotopy and uniform homotopy II. Proc. Amer. Math. Soc. 78 (1980), 288-290. DOI 10.1090/S0002-9939-1980-0550515-8 | MR 0550515 | Zbl 0452.55007
[8] Dold A.: Lectures on Algebraic Topology. Springer-Verlag 1972. MR 0415602 | Zbl 0234.55001
[9] Markl M.: On the $G$-spaces having an ${\cal S}-G-{\rm CW}$-approximation by a $G-{\rm CW}$-complex of finite $G$-type. Comment. Math. Univ. Carolinae 24, 3 (1983). MR 0730149
[10] Matumoto T.: Equivariant $K$-theory and Fredholm operators. J. Fac. Sci. Univ. Tokyo, Sect. IA, 18(1971), 109-112. MR 0290354 | Zbl 0213.25402
[11] Matumoto T.: On $G$-${\rm CW}$-complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. Tokyo, Sect. I, 18 (1971), 363-74. MR 0345103
[12] May J. P.: The homotopical foundations of algebraic topology. Mimeographed notes, University of Chicago.
[13] Milnor J.: On space having the homotopy type of a $CW$-complex. Trans. Amer. Math. Soc. 90 (1959), 272-280. MR 0100267
[14] Morita K.: Čech cohomology and covering dimension for topological spaces. Fund. Math. 87(1975), 31-52. MR 0362264 | Zbl 0336.55003
[15] Murayama M.: On $G$-$ANR$'s and their $G$-homotopy types. Osaka J. Math. 20 (1983), 479-512. MR 0718960 | Zbl 0531.57034
[16] Palais R. S.: The classification of $G$-spaces. Memoirs of the Amer. Math. Soc., Number 36 (1960). MR 0177401 | Zbl 0119.38403
[17] Spanier E. H.: Algebraic Topology. Springer-Verlag. MR 0666554 | Zbl 0810.55001
[18] Waner S.: Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258(1980), 351-368. MR 0558178 | Zbl 0444.55010
Partner of
EuDML logo