Previous |  Up |  Next

Article

References:
[1] A. V. Arhangel'skii: The frequency spectrum of a topological space and the classification of spaces. Soviet Math. Dokl. 13 (1972) 265-268. MR 0394575
[2] A. V. Arhangel'skii: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. (1981) 163-200.
[3] S. P. Franklin: Spaces in which sequences suffice. Fund. Math. 57 (1965) 107-115. MR 0180954 | Zbl 0132.17802
[4] R. Frič, P. Vojtáš: Diagonal conditions in sequential convergence. Proc. Conf. on Convergence, Bechyně, 1984. Akademie-Verlag Berlin 1985. MR 0835474
[5] G. Gruenhage: Infinite games and generalization of first countable spaces. Gen. Topology Appl. 6 (1976) 339-352. DOI 10.1016/0016-660X(76)90024-6 | MR 0413049
[6] G. Gruenhage: A note on the product of Fréchet spaces. Topology Proc. 3 (1978) 109-115. MR 0540482
[7] V. I. Malyhin: On countable space having no bicompactification of countable tightness. Soviet Math. Dokl. 13 (1972) 1407-1411. MR 0320981
[8] E. Michael: A quintuple quotient quest. Gen. Topology Appl. 2 (1972) 91-138. DOI 10.1016/0016-660X(72)90040-2 | MR 0309045 | Zbl 0238.54009
[9] N. Noble: Products with closed projections II. Trans. Amer. Soc. 160 (1971) 169-183. DOI 10.1090/S0002-9947-1971-0283749-X | MR 0283749 | Zbl 0233.54004
[10] T. Nogura: Fréchetness ofinverse limits and products. Topology Appl. 20 (1985) 59-66. DOI 10.1016/0166-8641(85)90035-5 | MR 0798445
[11] T. Nogura: Products of $\langle \alpha_i \rangle$-spaces. Topology Appl. 21 (1985) 251-259.
[12] T. Nogura: A counterexample for a problem of Arhangelskii Concerning products of Fréchet spaces. Topology Appl. 25 (1987), 75-80. DOI 10.1016/0166-8641(87)90076-9 | MR 0874979
[13] R. C. Olson: Bi-quotient maps, countably bi-sequential spaces. Gen. Topology Appl. 4 (1974) 1-28. DOI 10.1016/0016-660X(74)90002-6 | MR 0365463 | Zbl 0278.54008
[14] P. Simon: A compact Fréchet space whose square is not Fréchet. Comment. Math. Univ. Carolinae 21 (1980) 749-753. MR 0597764 | Zbl 0466.54022
[15] F. Siwiec: Sequence-covering and countably bi-quotient mappings. Gen. Topology Appl. 1 (1971) 143-154. DOI 10.1016/0016-660X(71)90120-6 | MR 0288737 | Zbl 0218.54016
Partner of
EuDML logo