Previous |  Up |  Next

Article

Title: On the integration theorem for Lie groupoids (English)
Author: Kock, Anders
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 39
Issue: 3
Year: 1989
Pages: 423-431
.
Category: math
.
MSC: 20L05
MSC: 53C99
MSC: 58A99
MSC: 58H05
idZBL: Zbl 0706.51014
idMR: MR1006307
DOI: 10.21136/CMJ.1989.102313
.
Date available: 2008-06-09T15:27:49Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102313
.
Reference: [1] E. Dubuc, A. Kock: Communications in Algebra.12 (1984), 1471- 1531. MR 0744457, 10.1080/00927878408823064
Reference: [2] C. Ehresmann: Les connexions infinitésimales dans un espace fibré différentiable.in Colloque de Topologie Bruxelles 1950. MR 0042768
Reference: [3] A. Kock: Synthetic Differential Geometry.London Math. Society Lecture Notes Series 51, Cambridge University Press 1981. Zbl 0487.18006, MR 0649622
Reference: [4] A. Kock: Differential forms with values in groups.Bull. Austral. Math. Soc. 25 (1982), 357-386. Zbl 0484.58005, MR 0671484, 10.1017/S0004972700005426
Reference: [5] A. Kock: A combinatorial theory of connections.in Mathematical Applications of Category Theory, Contemporary Mathematics Vol. 30 (1984). Zbl 0542.18007, MR 0749772, 10.1090/conm/030/749772
Reference: [6] A. Kock: Ehresmann and the fundamental structures of differential geometry seen from a synthetic viewpoint.in C. Ehresmann, Oeuvres Vol. I, Amiens 1984.
Reference: [7] A. Kock: Combinatorics of non-holonomous jets.Czechoslovak Mathematical Journal 35 (110) 1985, 419-428. Zbl 0594.18010, MR 0803037
Reference: [8] A. Kock: Combinatorial notions relating to principal fibre bundles.Journ. Pure Appl. Algebra 39 (1986), 141-151. Zbl 0575.18005, MR 0816895, 10.1016/0022-4049(86)90141-6
Reference: [9] A. Kock: Lie group valued integration in well adapted toposes.Austral. Math. Soc. 34 (1986), 395-410. Zbl 0596.18006, MR 0866187, 10.1017/S0004972700010285
Reference: [10] B. Malgrange: Equations de Lie.I, Journ. Diff. Geom. 6 (1972), 503-522. MR 0326784, 10.4310/jdg/1214430640
Reference: [11] J. Pradines: Théorie de Lie pour les groupoides différentiables.in Atti del Convegno Intern. di Geom. Diff. Bologna 1967. Zbl 0154.21704
Reference: [12] N. V. Quê: Sur les espaces de prolongement différentiable.J. Diff. Geom. 2 (1968), 33-40. 10.4310/jdg/1214501135
.

Files

Files Size Format View
CzechMathJ_39-1989-3_2.pdf 1.282Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo