Previous |  Up |  Next

Article

Title: On integration in Banach spaces, XI. Integration with respect to polymeasures (English)
Author: Dobrakov, Ivan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 1
Year: 1990
Pages: 8-24
.
Category: math
.
MSC: 28B05
MSC: 46G10
idZBL: Zbl 0793.28006
idMR: MR1032359
.
Date available: 2008-06-09T15:30:56Z
Last updated: 2016-04-06
Stable URL: http://hdl.handle.net/10338.dmlcz/102355
.
Related article: http://dml.cz/handle/10338.dmlcz/100979
Related article: http://dml.cz/handle/10338.dmlcz/100990
Related article: http://dml.cz/handle/10338.dmlcz/101628
Related article: http://dml.cz/handle/10338.dmlcz/101676
Related article: http://dml.cz/handle/10338.dmlcz/101709
Related article: http://dml.cz/handle/10338.dmlcz/102009
Related article: http://dml.cz/handle/10338.dmlcz/102239
Related article: http://dml.cz/handle/10338.dmlcz/102173
Related article: http://dml.cz/handle/10338.dmlcz/102255
Related article: http://dml.cz/handle/10338.dmlcz/102267
Related article: http://dml.cz/handle/10338.dmlcz/102395
Related article: http://dml.cz/handle/10338.dmlcz/102411
.
Reference: [1] Chang D. K., Rao M. M.: Bimeasures and sampling theorems for weakly harmonizable processes.Stochastic Anal. Appl. 1 (1983), 21-55. Zbl 0511.60034, MR 0700356, 10.1080/07362998308809003
Reference: [2] Chang D. K., Rao M. M.: Bimeasures and nonstationary processes.Real and Stochastic Analysis, 7-118, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1986. Zbl 0616.60009, MR 0856580
Reference: [3] Diestel J., Uhl J. J.: Vector measures.Amer. Math. Soc. Surveys, No. 15, Providence, 1977. Zbl 0369.46039, MR 0453964
Reference: [4] Diestel J.: Sequences and Series in Banach spaces.Graduate Texts in Mathematics 92, Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. MR 0737004
Reference: [5] Dobrakov I.: On integration in Banach spaces, I.Czech. Math. J. 20 (95), (1970), 511 - 536. Zbl 0215.20103, MR 0365138
Reference: [6] Dobrakov I.: On integration in Banach spaces, II.Czech. Math. J. 20 (95), (1970), 680-695. Zbl 0224.46050, MR 0365139
Reference: [7] Dobrakov I.: On integration in Banach spaces, III.Czech. Math. J. 29 (104), (1979), 478-499. Zbl 0429.28011, MR 0536071
Reference: [8] Dobrakov I.: On integration in Banach spaces, IV.Czech. Math. J. 30 (105), (1980), 259-279. Zbl 0452.28006, MR 0566051
Reference: [9] Dobrakov I.: On integration in Banach spaces,V.Czech.Math.J. 30 (105), (1980), 610-628. Zbl 0506.28004, MR 0592324
Reference: [10] Dobrakov I., Morales P.: On integration in Banach spacees, VI.Czech. Math. J. 35 (110), (1985), 173-187. MR 0787123
Reference: [11] Dobrakov I.: On integration in Banach spaces, VII.Czech. Math. J.38(113),(1988),434-449. Zbl 0674.28003, MR 0950297
Reference: [12] Dobrakov I.: On integration in Banach spaces, VIII (Polymeasures).Czech. Math. J. 37 (112), (1987), 487-506. Zbl 0688.28002, MR 0904773
Reference: [13] Dobrakov I.: On integration in Banach spaces, IX (Integration with respect to polymeasures).Czech. Math. J. 38 (113), (1988), 589-601. Zbl 0688.28003, MR 0962903
Reference: [14] Dobrakov I.: On integration in Banach spaces, X (Integration with respect to polymeasures).Czech. Math. J. 38 (113), (1988), 713-725. Zbl 0688.28004
Reference: [15] Dobrakov I.: Remarks on the integrability in Banach spaces.Math. Slovaca 36, 1986, 323-327. Zbl 0635.28005, MR 0866632
Reference: [16] Dobrakov I.: On representation oflinear operators on $ХС\sb{0}(Т,X)$.Czech. Math. J. 21 (96), (1971), 13-30. MR 0276804
Reference: [17] Dobrakov I.: On Lebesgue pseudonorms on $ХС\sb{0}(Т)$.Math. Slovaca 32, 1982, 327-333. MR 0676567
Reference: [18] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i))$.Czech. Math. J. 39 (114), (1989),288-302. MR 0992135
Reference: [19] Dobrakov I.: Representation ofmultilinear operators on $ХС\sb{0}(Т\sb{i}, X\sb{i})$.Atti Sem. Mat.Fis. Univ. Modena (to appear).
Reference: [20] Dobrakov I.: On extension of vector polymeasures.Czech. Math. J. 38 (113), (1988), 88-94. Zbl 0688.28005, MR 0925943
Reference: [21] Dobrakov I.: On submeasures, I.Dissertationes Math. 112, Warszawa, 1974. Zbl 0292.28001, MR 0367140
Reference: [22] Dobrakov I., Farková J.: On submeasures, II.Math. Slovaca 30, (1980), 65-81. MR 0568216
Reference: [23] Jefferies B.: Radon polymeasures.Bull. Austral. Math. Soc. 32, (1985), 207-215. Zbl 0577.28002, MR 0815364, 10.1017/S0004972700009904
Reference: [24] Kakihara Y.: A note on harmonizable and V-bounded processes.J. Multivariate Anal. 16, (1985), 140-156. Zbl 0561.60041, MR 0778493, 10.1016/0047-259X(85)90055-7
Reference: [25] Kakihara Y.: Some remarks on Hilbert space valued stochastic processes.Research Activities7,(1985),9-17. MR 0862075
Reference: [26] Kakihara Y.: Strongly and weakly harmonizable stochastic processes of H-valued random variables.J. Multivariate Anal. 18, (1986), 127-137. Zbl 0589.60034, MR 0827173, 10.1016/0047-259X(86)90064-3
Reference: [27] Katsaras A. K.: Bimeasures on topological spaces.Glasnik Matematički 20 (40), (1985), 35-49. Zbl 0587.28009, MR 0818611
Reference: [28] Kluvánek I.: Remarks on bimeasures.Proc. Amer. Math. Soc. 81 (1981), 233 - 239. MR 0593464, 10.2307/2044201
Reference: [29] Merzbach E., Zakai M.: Bimeasures and measures induced by planar stochastic integrators.J. Multivariate Anal. 19, (1986), 67-87. MR 0847574, 10.1016/0047-259X(86)90094-1
Reference: [30] Morse M.: Bimeasures and their integral extensions.Ann. Mat. Pura Appl. (4) 39, (1955), 345-356. Zbl 0066.04202, MR 0075273, 10.1007/BF02410778
Reference: [31] Morse M., Transue W.: Integral representations ofbilinear functionals.Proc. Nat. Acad. Sci. U.S.A. 35, 1949, 136-143. MR 0029478, 10.1073/pnas.35.3.136
Reference: [32] Morse M., Transue W.: C-bimeasures A and their superior integrals A*.Rend. Circ. Mat. Palermo, (2) 4, (1955), 270-300. MR 0086115, 10.1007/BF02854200
Reference: [33] Morse M., Transue W.: C-bimeasures A and their integral extensions.Ann. of Math. (2) 64, (1956), 480-504. MR 0086116, 10.2307/1969597
Reference: [34] Morse M., Transue W.: The representation ofa bimeasure on a rectangle.Proc. Nat.Acad. Sci. U.S.A., 42, (1956), 89-95. MR 0075274, 10.1073/pnas.42.2.89
Reference: [35] Niemi H.: On the support of a bimeasure and orthogonally scattered vector measures.Ann. Acad. Sci. Fenn. Ser. A I Math. 7 (1975), no. 2, 249-275. Zbl 0327.28009, MR 0399410, 10.5186/aasfm.1975.0114
Reference: [36] Rao M. M.: Harmonizable processes: Structure theory.L'Einseignement math., $II^e$ sér. 28, fasc. 3-4, 1982. Zbl 0501.60046, MR 0684239
Reference: [37] Thomas E.: L'intégration par rapport a une mesure de Radon vectorielle.Ann. Inst. Fourier Grenoble, 20, (1970), 55-191. Zbl 0195.06101, MR 0463396, 10.5802/aif.352
Reference: [38] Ylinen K.: Fourier transforms of noncommutative analogues of vector measures and bimeasures with applications to stochastic processes.Ann. Acad. Sci. Fenn. Ser. A I, 7, (1975),355-385. Zbl 0326.43009, MR 0399755
Reference: [39] YIinen K.: On vector bimeasures.Annali Mat.Pura Appl. (4) 777, (1978), 115-138. MR 0515957
.

Files

Files Size Format View
CzechMathJ_40-1990-1_2.pdf 2.058Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo