[1] J. Kalas:
On a "Liapunov-like" function for an equation $\dot z=f(t,\,z)$ with a complex-valued function $f$. Arch. Math. (Brno) 18 (1982), 65-76.
MR 0683347
[2] J. Kalas:
Asymptotic nature of solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$. Arch. Math. (Brno) 20 (1984), 83-94.
MR 0784859 |
Zbl 0564.34005
[3] J. Kalas:
Some results on the asymptotic behaviour of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$. Arch. Math. (Brno) 21 (1985), 195-199.
MR 0833131 |
Zbl 0585.34037
[4] J. Kalas:
Asymptotic behaviour of the solutions of the equation $dz/dt = f(t, z)$ with a complex-valued function $f$. Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979, pp. 431 - 462.
MR 0680606
[5] J. Kalas:
On certain asymptotic properties of the solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$. Czech. Math. J. 33 (1983), 390-407.
MR 0718923
[6] C. Kulig:
On a system of differential equations. Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48.
MR 0204763 |
Zbl 0267.34029
[7] M. Ráb:
Equation $Z\sp{\prime} =A(t)-Z\sp{2}$ coefficient of which has a small modulus. Czech. Math. J. 27 (1971), 311-317.
MR 0287096
[9] Z. Tesařová:
The Riccati differential equation with complex-valued coefficients and application to the equation $x\sp{\prime\prime}+P(t)x\sp{\prime} +Q(t)x=0$. Arch. Math. (Brno) 18 (1982), 133-143.
MR 0682101