Previous |  Up |  Next

Article

Title: Contributions to the asymptotic behaviour of the equation $\dot z=f(t,z)$ with a complex-valued function $f$ (English)
Author: Kalas, Josef
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 1
Year: 1990
Pages: 31-45
.
Category: math
.
MSC: 34E99
idZBL: Zbl 0705.34055
idMR: MR1037349
DOI: 10.21136/CMJ.1990.102357
.
Date available: 2008-06-09T15:31:06Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102357
.
Reference: [1] J. Kalas: On a "Liapunov-like" function for an equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 18 (1982), 65-76. MR 0683347
Reference: [2] J. Kalas: Asymptotic nature of solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 20 (1984), 83-94. Zbl 0564.34005, MR 0784859
Reference: [3] J. Kalas: Some results on the asymptotic behaviour of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Arch. Math. (Brno) 21 (1985), 195-199. Zbl 0585.34037, MR 0833131
Reference: [4] J. Kalas: Asymptotic behaviour of the solutions of the equation $dz/dt = f(t, z)$ with a complex-valued function $f$.Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979, pp. 431 - 462. MR 0680606
Reference: [5] J. Kalas: On certain asymptotic properties of the solutions of the equation $\dot z=f(t,\,z)$ with a complex-valued function $f$.Czech. Math. J. 33 (1983), 390-407. MR 0718923
Reference: [6] C. Kulig: On a system of differential equations.Zeszyty Naukowe Univ. Jagiellonskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48. Zbl 0267.34029, MR 0204763
Reference: [7] M. Ráb: Equation $Z\sp{\prime} =A(t)-Z\sp{2}$ coefficient of which has a small modulus.Czech. Math. J. 27 (1971), 311-317. MR 0287096
Reference: [8] M. Ráb: Geometrical approach to the study of the Riccati differential equation with complexvalued coefficients.J. Diff. Equations 25 (1977), 108-114. MR 0492454, 10.1016/0022-0396(77)90183-8
Reference: [9] Z. Tesařová: The Riccati differential equation with complex-valued coefficients and application to the equation $x\sp{\prime\prime}+P(t)x\sp{\prime} +Q(t)x=0$.Arch. Math. (Brno) 18 (1982), 133-143. MR 0682101
.

Files

Files Size Format View
CzechMathJ_40-1990-1_4.pdf 1.375Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo