Previous |  Up |  Next

Article

Title: Coefficients of ergodicity generated by non-symmetrical vector norms (English)
Author: Lešanovský, Antonín
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 2
Year: 1990
Pages: 284-294
.
Category: math
.
MSC: 15A18
MSC: 15A51
MSC: 60J10
idZBL: Zbl 0719.60067
idMR: MR1046294
DOI: 10.21136/CMJ.1990.102380
.
Date available: 2008-06-09T15:32:50Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102380
.
Reference: [1] F. L. Bauer E. Deutsch J. Stoer: Abschätzungen für die Eigenwerte positiver linearen Operatoren.Linear Algebra and Applicns. 2 (1969), 275-301. MR 0245587
Reference: [2] G. Birkhoff: Lattice Theory.Amer. Math. Soc. Colloq. Publicns., vol. XXV, Providence, R. I.-3rd edition (1967). Zbl 0153.02501, MR 0227053
Reference: [3] R. L. Dobrushin: Central limit theorem for non-stationary Markov chains I, II.Theory Prob. Appl. 1 (1956), 63-80, 329-383 (English translation). Zbl 0093.15001, MR 0086436
Reference: [4] J. Hajnal: Weak ergodicity in non-homogeneous Markov chains.Proc. Camb. Phil. Soc. 54(1958),233-246. Zbl 0082.34501, MR 0096306
Reference: [5] R. A. Hom, Ch. A. Johnson: Matrix Analysis.Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne and Sydney (1985). MR 0832183
Reference: [6] S. Karlin: A First Course in Stochastic Processes.Academic Press, New York and London (1968). Zbl 0177.21102, MR 0208657
Reference: [7] D. G. Kendall: Geometric ergodicity and the theory of queues.In: Matehmatical Methods in the Social Sciences, K. J. Arrow, S. Karlin, P. Suppes (eds.), Stanford, California (1960). MR 0124088
Reference: [8] P. Kratochvíl A. Lešanovský: A contractive property in finite state Markov chains.Czechoslovak Math. J. 35 (110) (1985), 491-509. MR 0803042
Reference: [9] A. Paz: Introduction to Probabilistic Automata.Academic Press, New York (1971). Zbl 0234.94055, MR 0289222
Reference: [10] A. Rhodius: The maximal value for coefficients of ergodicity.Stochastic Processes Appl. 29 (1988), 141- 143. Zbl 0657.60092, MR 0952825, 10.1016/0304-4149(88)90033-6
Reference: [11] U. G. Rothblum, C. P. Tan: Upper bounds on the maximum modulus of subdominant eingenvalues of nonnegative matrices.Linear Algebra Appl. 66 (1985), 45-86. MR 0781294, 10.1016/0024-3795(85)90125-9
Reference: [12] Т. А. Сарымсаков: Основы теории процессов Маркова.Государственное издательство технико-теоретической литературы, Москва (1954). Zbl 0995.90535
Reference: [13] Т. А. Сарымсаков: К теории нзоднородных цепей Маркова.Докл. АН УзССР 8 (1956), 3-7. Zbl 0995.90522
Reference: [14] E. Seneta: On the historical development of the theory of finite inhomogeneous Markov chains.Proc. Camb. Phil. Soc. 74 (1973), 507-513. Zbl 0271.60074, MR 0331522, 10.1017/S0305004100077276
Reference: [15] E. Seneta: Coefficients of ergodicity: structure and applications.Adv. Appl. Prob. 11 (1979), 576-590. Zbl 0406.60060, MR 0533060, 10.1017/S000186780003281X
Reference: [16] E. Seneta: Non-negative Matrices and Markov Chains.Springer-Verlag, New York, Heidelberg and Berlin (1981). Zbl 0471.60001, MR 2209438
Reference: [17] C. P. Tan: A functional form for a particular coefficient of ergodicity.J. Appl. Prob. 19 (1982), 858-863. Zbl 0501.60074, MR 0675151, 10.2307/3213840
Reference: [18] C. P. Tan: Coefficients of ergodicity with respect to vector norms.J. Appl. Prob. 20 (1983), 277-287. Zbl 0515.60072, MR 0698531, 10.2307/3213801
Reference: [19] D. Vere-Jones: Geometric ergodicity in denumerable Markov chains.Quart. J. Math. Oxford (2) 13 (1962), 7-28. Zbl 0104.11805, MR 0141160, 10.1093/qmath/13.1.7
.

Files

Files Size Format View
CzechMathJ_40-1990-2_10.pdf 1.160Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo