Previous |  Up |  Next

Article

Title: Eigenvalues and the max-cut problem (English)
Author: Mohar, Bojan
Author: Poljak, Svatopluk
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 2
Year: 1990
Pages: 343-352
.
Category: math
.
MSC: 05C50
MSC: 90B10
MSC: 90C27
MSC: 90C35
idZBL: Zbl 0724.05046
idMR: MR1046300
DOI: 10.21136/CMJ.1990.102386
.
Date available: 2008-06-09T15:33:18Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102386
.
Reference: [A] N. Alon: Eigenvalues and expanders.Combinatorica 6, (1986) 83-96. Zbl 0661.05053, MR 0875835, 10.1007/BF02579166
Reference: [AM] N. Alon V. D. Milman: $\lambda_1$Xx, isoperimetric inequalities for graphs and superconcentrators.J. Comb. Th. B 38 (1985) 73-88. MR 0782626, 10.1016/0095-8956(85)90092-9
Reference: [AnM] W. N. Anderson T. D. Morley: Eigenvalues of the Laplacian of a graph.Lin. Multilin. Algebra 18 (1985) 141-145. MR 0817657, 10.1080/03081088508817681
Reference: [B] F. Barahona: The max-cut problem in graphs not contractible to K5.Oper. Res. Lett. 2 (1983) 107-111. MR 0717742, 10.1016/0167-6377(83)90016-0
Reference: [BGJR] F. Barahona M. Grötschel M. Jünger G. Reinelt: An application of combinatorial optimization to statistical physcis and circuit layout design.Oper. Res. 36 (1988) 493-513. 10.1287/opre.36.3.493
Reference: [CDS] D. M. Cvetkovic M. Doob, and H. Sachs: Spectra of graphs - Theory and applications.VEB Deutscher Verlag der Wiss. Berlin 1979/Acad. Press, N.Y. 1979.
Reference: [F] M. Fiedler: Algebraic connectivity of graphs.Czechoslovak Math. J. 23 (98) (1973) 298-305. Zbl 0265.05119, MR 0318007
Reference: [GN] M. Grötschel, G. L. Nemhauser: A polynomial algorithm for the max-cut problem on graphs without long odd cycles.Math. Programming 29 (1984) 28-40. MR 0740503, 10.1007/BF02591727
Reference: [GP] M. Grötschel, W. R. Pulleyblank: Weakly bipartite graphs and the max-cut problem.Oper. Res.Lett. / (1981) 23-27. MR 0643056, 10.1016/0167-6377(81)90020-1
Reference: [H] F. Hadlock: Finding a maximum cut of a planar graph in polynomial time.SIAM J. on Comp. 4 (1975) 221-225. Zbl 0321.05120, MR 0379290, 10.1137/0204019
Reference: [Ka] R. M. Karp: Reducibility among combinatorial problems.in Complexity of Computer Computations, R. E. Miller, J. W. Thatcher (eds.), Plenum Press, New York 1972, pp. 85-103. MR 0378476
Reference: [Ke] A. K. Kel'mans: Properties of the characteristic polynomial of a graph."Kibernetiky - na službu kommunizmu" vol. 4, Energija, Moskva-Leningrad, 1967, pp. 27-41 (in Russian). MR 0392633
Reference: [L] P. Lankaster: Theory of Matrices.Acad. Press, New York-London 1969. MR 0245579
Reference: [Lo] L. Lovász: On the Shannon capacity of a graph.IEEE Trans. Inform. Theory 25 (1979) 1-7. MR 0514926, 10.1109/TIT.1979.1055985
Reference: [LPS] A. Lubotzky R. Phillips, P. Sarnak: Ramanujan graphs.Combinatorica, 8 (1988) 261-277. MR 0963118, 10.1007/BF02126799
Reference: [Ml] B. Mohar: Isoperimetric numbers of graphs.J. Comb. Th. B, to appear. Zbl 0719.05042, MR 1026065
Reference: [M2] B. Mohar: The Laplacian spectrum of graphs.submitted. Zbl 0840.05059
Reference: [NP] J. Nešetřil, S. Poljak: A remark on max-cut problem with an application to digital-analogue convertors.Oper. Res. Lett. 4 (1986) 289-291. MR 0836264, 10.1016/0167-6377(86)90031-3
Reference: [OD] G. I. Orlova, Y. G. Dorfman: Finding the maximal cut in a graph.Engrg. Cybernetics 10 (1972) 502-506. MR 0329962
Reference: [PT] S. Poljak, Z. Tuza: Maximum bipartite subgraphs of Kneser graphs.Graphs and Combinatorics, 3 (1987) 191-199. Zbl 0674.05064, MR 0932133, 10.1007/BF01788540
Reference: [PT1] S. Poljak, D. Turzík: A polynomial heuristic for certain subgraph optimization problems with guaranteed lower bound.Discrete Math. 58 (1986) 99-104. MR 0820844, 10.1016/0012-365X(86)90192-5
Reference: [PT2] S. Poljak, D. Turzík: Maximum bipartite subgraphs of circulants.submitted.
Reference: [T] R. M. Tanner: Explicit concentrators from generalized n-gons.SIAM J. Alg. Disc. Meth. 5 (1984) 287-293. Zbl 0554.05045, MR 0752035, 10.1137/0605030
.

Files

Files Size Format View
CzechMathJ_40-1990-2_16.pdf 1.171Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo