Previous |  Up |  Next

Article

References:
[1] Amerio L., Prouse G.: Almost-periodic functions and functional equations. Van Nostrand New York 1971. MR 0275061 | Zbl 0215.15701
[2] Arosio A.: Linear second order differential equations in Hilbert spaces - the Cauchy problem and asymptotic behaviour for large time. Arch. Rational Mech. AnaI. 86 (2) (1984), pp. 147-180. DOI 10.1007/BF00275732 | MR 0751306 | Zbl 0563.35041
[3] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions. Duke Math. J. 51 (4) (1984), pp. 923-936. MR 0771388 | Zbl 0571.47051
[4] Kato T.: Quasilinear equations of evolution with applications to partial differential equations. Lecture Notes in Math., Springer Berlin 1975, pp. 25 - 70. DOI 10.1007/BFb0067080 | MR 0407477
[5] Krejčí P.: Hard implicit function theorem and small periodic solutions to partial differential equations. Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536. MR 0775567
[6] Lions J. L., Magenes E.: Problèmes aux limites non homogènes et applications I. Dunod Paris 1968.
[7] Matsumura A.: Global existence and asymptotics of the second-order quasilinear hyperbolic equations with the first-order dissipation. Publ. RIMS Kyoto Univ. 13 (1977), pp. 349-379. DOI 10.2977/prims/1195189813 | MR 0470507
[8] Milani A.: Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations. Ann. Mat. Pura Appl. 140 (4) (1985), pp. 331-344. DOI 10.1007/BF01776855 | MR 0807643
[9] Petzeltová H., Štědrý M.: Time periodic solutions of telegraph equations in n spatial variables. Časopis Pěst. Mat. 109 (1984), pp. 60 - 73. MR 0741209
[10] Rabinowitz P. H.: Periodic solutions of nonlinear hyperbolic partial differential equations II. Comm. Pure Appl. Math. 22 (1969), pp. Î5-39. DOI 10.1002/cpa.3160220103 | MR 0236504 | Zbl 0157.17301
[11] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funkcialaj Ekvacioj 25 (1982), pp. 303-345. MR 0707564
[12] Shibata Y., Tsutsumi Y.: Local existence of solution for the initial boundary value problem of fully nonlinear wave equation. Nonlinear Anal. 11 (3) 1987, pp. 335-365. DOI 10.1016/0362-546X(87)90051-4 | MR 0881723 | Zbl 0651.35053
[13] Štědrý M.: Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions. Ann. Inst. Henri Poincaré 6 (3) (1989), pp. 209-232. MR 0995505
[14] Vejvoda O., al.: Partial differential equations: Time periodic solutions. Martinus Nijhoff PubI. 1982. Zbl 0501.35001
Partner of
EuDML logo