Previous |  Up |  Next

Article

Title: Bounded, almost-periodic, and periodic solutions to fully nonlinear telegraph equations (English)
Author: Feireisl, Eduard
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 40
Issue: 3
Year: 1990
Pages: 514-527
.
Category: math
.
MSC: 35B10
MSC: 35B15
MSC: 35L70
idZBL: Zbl 0762.35066
idMR: MR1065031
DOI: 10.21136/CMJ.1990.102404
.
Date available: 2008-06-09T15:34:41Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102404
.
Reference: [1] Amerio L., Prouse G.: Almost-periodic functions and functional equations.Van Nostrand New York 1971. Zbl 0215.15701, MR 0275061
Reference: [2] Arosio A.: Linear second order differential equations in Hilbert spaces - the Cauchy problem and asymptotic behaviour for large time.Arch. Rational Mech. AnaI. 86 (2) (1984), pp. 147-180. Zbl 0563.35041, MR 0751306, 10.1007/BF00275732
Reference: [3] Kato T.: Locally coercive nonlinear equations, with applications to some periodic solutions.Duke Math. J. 51 (4) (1984), pp. 923-936. Zbl 0571.47051, MR 0771388
Reference: [4] Kato T.: Quasilinear equations of evolution with applications to partial differential equations.Lecture Notes in Math., Springer Berlin 1975, pp. 25 - 70. MR 0407477, 10.1007/BFb0067080
Reference: [5] Krejčí P.: Hard implicit function theorem and small periodic solutions to partial differential equations.Comment. Math. Univ. Carolinae 25 (1984), pp. 519-536. MR 0775567
Reference: [6] Lions J. L., Magenes E.: Problèmes aux limites non homogènes et applications I.Dunod Paris 1968.
Reference: [7] Matsumura A.: Global existence and asymptotics of the second-order quasilinear hyperbolic equations with the first-order dissipation.Publ. RIMS Kyoto Univ. 13 (1977), pp. 349-379. MR 0470507, 10.2977/prims/1195189813
Reference: [8] Milani A.: Time periodic smooth solutions of hyperbolic quasilinear equations with dissipation term and their approximation by parabolic equations.Ann. Mat. Pura Appl. 140 (4) (1985), pp. 331-344. MR 0807643, 10.1007/BF01776855
Reference: [9] Petzeltová H., Štědrý M.: Time periodic solutions of telegraph equations in n spatial variables.Časopis Pěst. Mat. 109 (1984), pp. 60 - 73. MR 0741209
Reference: [10] Rabinowitz P. H.: Periodic solutions of nonlinear hyperbolic partial differential equations II.Comm. Pure Appl. Math. 22 (1969), pp. Î5-39. Zbl 0157.17301, MR 0236504, 10.1002/cpa.3160220103
Reference: [11] Shibata Y.: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain.Funkcialaj Ekvacioj 25 (1982), pp. 303-345. MR 0707564
Reference: [12] Shibata Y., Tsutsumi Y.: Local existence of solution for the initial boundary value problem of fully nonlinear wave equation.Nonlinear Anal. 11 (3) 1987, pp. 335-365. Zbl 0651.35053, MR 0881723, 10.1016/0362-546X(87)90051-4
Reference: [13] Štědrý M.: Small time-periodic solutions to fully nonlinear telegraph equations in more spatial dimensions.Ann. Inst. Henri Poincaré 6 (3) (1989), pp. 209-232. MR 0995505, 10.1016/S0294-1449(16)30323-7
Reference: [14] Vejvoda O., al.: Partial differential equations: Time periodic solutions.Martinus Nijhoff PubI. 1982. Zbl 0501.35001
.

Files

Files Size Format View
CzechMathJ_40-1990-3_17.pdf 1.558Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo