Previous |  Up |  Next

Article

Title: On the structure of semilattice sums (English)
Author: Romanowska, Anna B.
Author: Smith, J. D. H.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 41
Issue: 1
Year: 1991
Pages: 24-43
.
Category: math
.
MSC: 06A12
MSC: 08A62
MSC: 08B05
idZBL: Zbl 0793.08010
idMR: MR1087619
DOI: 10.21136/CMJ.1991.102429
.
Date available: 2008-06-09T15:36:29Z
Last updated: 2020-07-28
Stable URL: http://hdl.handle.net/10338.dmlcz/102429
.
Reference: [C] A. H. Clifford: Semigroups admitting relative inverses.Ann. Math. 42 (1941), 1037-1049. Zbl 0063.00920, MR 0005744, 10.2307/1968781
Reference: [Co] P. M. Cohn: Universal Algebra.Reidel, Dordrecht, 1981. Zbl 0461.08001, MR 0620952
Reference: [D] J. Dudek: Varieties of idempotent commutative groupoids.Fund. Math. 120 (1983), 193-204. MR 0755776, 10.4064/fm-120-3-193-204
Reference: [DG] J. Dudek E. Graczyńska: The lattice of varieties of algebras.Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 337-340. MR 0640325
Reference: [GKW] E. Graczyńska D. Kelly P. Winkler: On the regular part of varieties of algebras.Algebra Universalis 23 (1986), 77-84. MR 0873598, 10.1007/BF01190914
Reference: [JK1] J. Ježek T. Kepka: Ideal free CIM-groupoids and open convex sets.Springer Lecture Notes in Mathematics 1004, Universal Algebra and Lattice Theory, 1983, 166-175. MR 0716182
Reference: [JK2] J. Ježek T. Kepka: Medial Groupoids.Rozpravy ČSAV, Řada mat. a přír. věd. 93/2 (1983), Academia, Praha. MR 0734873
Reference: [JK3] J. Ježek T. Kepka: The lattice of varieties of commutative idempotent abelian distributive groupoids.Algebra Universalis 5 (1975), 225-237. MR 0398952, 10.1007/BF02485256
Reference: [Ku] M. Kuczma: An introduction to the Theory of Functional Equations and Inequalities.P.W.N, Warszawa, 1985. Zbl 0555.39004, MR 0788497
Reference: [L] G. Lallement: Demi-groupes réguliers.Ann. Math. Pura Appl. 77 (1967), 47-129. Zbl 0203.02001, MR 0225915, 10.1007/BF02416940
Reference: [Mal] A. I. Маľсеv: Algebraic Systems.Springer-Verlag, Berlin 1973. Zbl 0282.65028, MR 0349384
Reference: [Ma2] A. I. Маľсеv: Multiplication of classes of algebraic systems.(Russian), Sibirsk. Math. Zh. 8 (1967), 346-365. MR 0213276
Reference: [Me] I. I. Меľnіk: Normal closures of perfect varieties of universal algebras.(Russian), Ordered sets and lattices, Izdat. Saratov. Univ., Saratov (1971), 56-65, MR 52 # 3011. MR 0382123
Reference: [Mi] B. Melnik: Theory of filters.Commun. Math. Phys. 15 (1969), 1 - 46. MR 0258357, 10.1007/BF01645423
Reference: [W] W. D. Neumann: On the quasivariety of convex subsets of affine spaces.Arch. Math. 21 (1970), 11-16. MR 0262911, 10.1007/BF01220869
Reference: [Pe] M. Petrich: Lectures in Semigroups.Akademie-Verlag, Berlin, 1977. Zbl 0369.20036, MR 0447437
Reference: [Pł1] J. Plonka: On a method of construction of abstract algebras.Fund. Math. 61 (1967), 183-189. Zbl 0168.26701, MR 0225701, 10.4064/fm-61-2-183-189
Reference: [Pł2] J. Plonka: On equational classes of abstract algebras defined by regular equations.Fund. Math. 64 (1969), 241-247. Zbl 0187.28702, MR 0244133, 10.4064/fm-64-2-241-247
Reference: [Po] F. Poyatos: Generalizacion de un teorema de J. A. Green a algebras universales.Rev. Math. Hisp.-Amer. (4)40 (1980), 193-205.
Reference: [R1] A. Romanowska: Constructing and reconstructing of algebras.Demonstratio Math. 18 (1985), 209-230. Zbl 0594.08001, MR 0816030
Reference: [R2] A. Romanowska: On regular and regularised varieties.Algebra Universalis 23 (1986), 215-241. MR 0903930, 10.1007/BF01230618
Reference: [RS1] A. Romanowska J. D. H. Smith: From affine to projective geometry via convexity.Springer Lecture Notes in Mathematics 1149, Universal Algebra and Lattice Theory, 1985, 255-269. MR 0823020
Reference: [RS2] A. Romanowska J. D. H. Smith: Modal Theory-an Algebraic Approach to Order.Geometry and Convexity, Heldermann Verlag, Berlin, 1985. MR 0788695
Reference: [RS3] A. Romanowska J. D. H. Smith: On the structure of barycentric algebras.Houston J. Math.,toappear. MR 1089027
Reference: [S1] W. W. Saliĭ: Equationally normal varieties of semigroups.(Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 84 (1969), 61-68, MR 41 # 8555. MR 0263956
Reference: [S2] W. W. Saliĭ: A theorem on homomorphisms of strong semilattices of semigroups.(Russian), Theory of semigroups and its applications, V. V. Vagner (ed.), Izd. Saratov. Univ. 2 (1970), 69-74, MR 53 # 10959.
.

Files

Files Size Format View
CzechMathJ_41-1991-1_3.pdf 2.781Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo